Two-sided eigenvalue estimates for subordinate processes in domains
暂无分享,去创建一个
[1] Dimitrios Betsakos. Symmetrization, symmetric stable processes, and Riesz capacities , 2003 .
[2] R. Song,et al. Potential Theory of Geometric Stable Processes , 2006 .
[3] Zhen-Qing Chen. Multidimensional symmetric stable processes , 1999 .
[4] J. Wu,et al. Boundary Harnack Principle for Symmetric Stable Processes , 1999 .
[5] R. Getoor,et al. The asymptotic distribution of the eigenvalues for a class of Markov operators. , 1959 .
[6] Martin Boundary and Integral Representation for Harmonic Functions of Symmetric Stable Processes , 1998, math/9809179.
[7] Zhen-Qing Chen,et al. Drift transforms and Green function estimates for discontinuous processes , 2003 .
[8] R. DeBlassie,et al. Higher order PDEs and symmetric stable processes , 2004 .
[9] Renming Song,et al. Intrinsic ultracontractivity and conditional gauge for symmetric stable processes , 1997 .
[10] P. Méndez-Hernández. Brascamp-Lieb-Luttinger inequalities for convex domains of finite inradius , 2002 .
[11] N. Mitra,et al. Symmetrization , 2007, ACM Trans. Graph..
[12] Correction to “Higher Order PDEs and Symmetric Stable Processes,” Probability Theory and Related Fields 129, 495–536 (2004) , 2005 .
[13] Yoshihiro Nakamura. Classes of Operator Monotone Functions and Stieltjes Functions , 1989 .
[14] Mark S. C. Reed,et al. Method of Modern Mathematical Physics , 1972 .
[15] E. Davies,et al. Heat kernels and spectral theory , 1989 .
[16] T. Kulczycki. Intrinsic ultracontractivity for symmetric stable processes , 1998 .
[17] K. Bogdan. Representation of $\alpha$-harmonic functions in Lipschitz domains , 1999 .
[18] Lev B. Klebanov,et al. A Problem of Zolotarev and Analogs of Infinitely Divisible and Stable Distributions in a Scheme for Summing a Random Number of Random Variables , 1985 .
[19] Krzysztof Bogdan,et al. Potential theory for the α-stable Schrödinger operator on bounded Lipschitz domains , 1999 .
[20] R. Wolpert. Lévy Processes , 2000 .
[21] Renming Song,et al. Potential theory of subordinate killed Brownian motion in a domain , 2003 .
[22] Takashi Komatsu,et al. Pseudo-differential operators and Markov processes , 1984 .
[23] Renming Song,et al. Estimates on Green functions and Poisson kernels for symmetric stable processes , 1998 .
[24] R. Latala,et al. A Brascamp-Lieb-Luttinger–type inequality and applications to symmetric stable processes , 2001 .
[25] H. Ôkura. Recurrence and transience criteria for subordinated symmetric Markov processes , 2002 .
[26] R. Schilling. On the domain of the generator of a subordinate semigroup , 1996 .
[27] I. Chavel. Eigenvalues in Riemannian geometry , 1984 .
[28] T. Kulczycki. Properties of Green function of symmetric stable processes , 1997 .
[29] Barry Simon,et al. Analysis of Operators , 1978 .
[30] Intrinsic ultracontractivity, conditional lifetimes and conditional gauge for symmetric stable processes on rough domains , 1998, math/9809180.
[31] Krzysztof Bogdan,et al. The boundary Harnack principle for the fractional Laplacian , 1997 .
[32] M. Ryznar,et al. Estimates of Green Function for Relativistic α-Stable Process , 2002 .
[33] Rodrigo Bañuelos,et al. The Cauchy process and the Steklov problem , 2004 .
[34] E. Davies,et al. One-parameter semigroups , 1980 .