Two-sided eigenvalue estimates for subordinate processes in domains

Let X={Xt ,t 0} be a symmetric Markov process in a state space E and D an open set of E. Denote by X D the subprocess of X killed upon leaving D. Let S ={ St ,t 0} be a subordinator with Laplace exponent that is independent of X. The processes X := {XSt ,t 0} and (X D ) := {X Dt ,t 0} are called the subordinate processes of X and X D , respectively. Under some mild conditions, we show that, if {−n ,n 1} and {−n ,n 1} denote the eigenvalues of the generators of the subprocess of X killed upon leaving D and of the process X D respectively, then

[1]  Dimitrios Betsakos Symmetrization, symmetric stable processes, and Riesz capacities , 2003 .

[2]  R. Song,et al.  Potential Theory of Geometric Stable Processes , 2006 .

[3]  Zhen-Qing Chen Multidimensional symmetric stable processes , 1999 .

[4]  J. Wu,et al.  Boundary Harnack Principle for Symmetric Stable Processes , 1999 .

[5]  R. Getoor,et al.  The asymptotic distribution of the eigenvalues for a class of Markov operators. , 1959 .

[6]  Martin Boundary and Integral Representation for Harmonic Functions of Symmetric Stable Processes , 1998, math/9809179.

[7]  Zhen-Qing Chen,et al.  Drift transforms and Green function estimates for discontinuous processes , 2003 .

[8]  R. DeBlassie,et al.  Higher order PDEs and symmetric stable processes , 2004 .

[9]  Renming Song,et al.  Intrinsic ultracontractivity and conditional gauge for symmetric stable processes , 1997 .

[10]  P. Méndez-Hernández Brascamp-Lieb-Luttinger inequalities for convex domains of finite inradius , 2002 .

[11]  N. Mitra,et al.  Symmetrization , 2007, ACM Trans. Graph..

[12]  Correction to “Higher Order PDEs and Symmetric Stable Processes,” Probability Theory and Related Fields 129, 495–536 (2004) , 2005 .

[13]  Yoshihiro Nakamura Classes of Operator Monotone Functions and Stieltjes Functions , 1989 .

[14]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[15]  E. Davies,et al.  Heat kernels and spectral theory , 1989 .

[16]  T. Kulczycki Intrinsic ultracontractivity for symmetric stable processes , 1998 .

[17]  K. Bogdan Representation of $\alpha$-harmonic functions in Lipschitz domains , 1999 .

[18]  Lev B. Klebanov,et al.  A Problem of Zolotarev and Analogs of Infinitely Divisible and Stable Distributions in a Scheme for Summing a Random Number of Random Variables , 1985 .

[19]  Krzysztof Bogdan,et al.  Potential theory for the α-stable Schrödinger operator on bounded Lipschitz domains , 1999 .

[20]  R. Wolpert Lévy Processes , 2000 .

[21]  Renming Song,et al.  Potential theory of subordinate killed Brownian motion in a domain , 2003 .

[22]  Takashi Komatsu,et al.  Pseudo-differential operators and Markov processes , 1984 .

[23]  Renming Song,et al.  Estimates on Green functions and Poisson kernels for symmetric stable processes , 1998 .

[24]  R. Latala,et al.  A Brascamp-Lieb-Luttinger–type inequality and applications to symmetric stable processes , 2001 .

[25]  H. Ôkura Recurrence and transience criteria for subordinated symmetric Markov processes , 2002 .

[26]  R. Schilling On the domain of the generator of a subordinate semigroup , 1996 .

[27]  I. Chavel Eigenvalues in Riemannian geometry , 1984 .

[28]  T. Kulczycki Properties of Green function of symmetric stable processes , 1997 .

[29]  Barry Simon,et al.  Analysis of Operators , 1978 .

[30]  Intrinsic ultracontractivity, conditional lifetimes and conditional gauge for symmetric stable processes on rough domains , 1998, math/9809180.

[31]  Krzysztof Bogdan,et al.  The boundary Harnack principle for the fractional Laplacian , 1997 .

[32]  M. Ryznar,et al.  Estimates of Green Function for Relativistic α-Stable Process , 2002 .

[33]  Rodrigo Bañuelos,et al.  The Cauchy process and the Steklov problem , 2004 .

[34]  E. Davies,et al.  One-parameter semigroups , 1980 .