Approximating Bayesian belief networks by arc removal

I propose a general framework for approximating Bayesian belief networks through model simplification by arc removal. Given an upper bound on the absolute error allowed on the prior and posterior probability distributions of the approximated network, a subset of arcs is removed, thereby speeding up probabilistic inference.

[1]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1992, Artificial Intelligence.

[2]  L. C. van der Gaag,et al.  Index expression belief networks for information disclosure , 1994 .

[3]  Gregory F. Cooper,et al.  Probabilistic inference in multiply connected belief networks using loop cutsets , 1990, Int. J. Approx. Reason..

[4]  Gregory F. Cooper,et al.  The Computational Complexity of Probabilistic Inference Using Bayesian Belief Networks , 1990, Artif. Intell..

[5]  David J. Spiegelhalter,et al.  Local computations with probabilities on graphical structures and their application to expert systems , 1990 .

[6]  S. Kullback,et al.  A lower bound for discrimination information in terms of variation (Corresp.) , 1967, IEEE Trans. Inf. Theory.

[7]  Steen Andreassen,et al.  MUNIN - A Causal Probabilistic Network for Interpretation of Electromyographic Findings , 1987, IJCAI.

[8]  Frank Jensen,et al.  Approximations in Bayesian Belief Universe for Knowledge Based Systems , 2013, UAI 1990.

[9]  S. Kullback,et al.  Information Theory and Statistics , 1959 .

[10]  N. Wermuth,et al.  On Substantive Research Hypotheses, Conditional Independence Graphs and Graphical Chain Models , 1990 .

[11]  Steffen L. Lauritzen,et al.  Bayesian updating in causal probabilistic networks by local computations , 1990 .

[12]  Dan Geiger,et al.  d-Separation: From Theorems to Algorithms , 2013, UAI.

[13]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[14]  Max Henrion,et al.  Propagating uncertainty in bayesian networks by probabilistic logic sampling , 1986, UAI.

[15]  T. Speed,et al.  Recursive causal models , 1984, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[16]  Michael Luby,et al.  Approximating Probabilistic Inference in Bayesian Belief Networks is NP-Hard , 1993, Artif. Intell..

[17]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[18]  Uffe Kjærulff,et al.  Reduction of Computational Complexity in Bayesian Networks Through Removal of Weak Dependences , 1994, UAI.

[19]  Henrik I. Christensen,et al.  Use of causal probabilistic networks as high-level models in computer vision , 1990 .

[20]  Mark E. Frisse,et al.  A tutorial introduction to stochastic simulation algorithms for belief networks , 1993, Artif. Intell. Medicine.

[21]  Gregory F. Cooper,et al.  A combination of exact algorithms for inference on Bayesian belief networks , 1991, Int. J. Approx. Reason..