RAPID: Early Classification of Explosive Transients Using Deep Learning

We present RAPID (Real-time Automated Photometric IDentification), a novel time-series classification tool capable of automatically identifying transients from within a day of the initial alert, to the full lifetime of a light curve. Using a deep recurrent neural network with Gated Recurrent Units (GRUs), we present the first method specifically designed to provide early classifications of astronomical time-series data, typing 12 different transient classes. Our classifier can process light curves with any phase coverage, and it does not rely on deriving computationally expensive features from the data, making RAPID well-suited for processing the millions of alerts that ongoing and upcoming wide-field surveys such as the Zwicky Transient Facility (ZTF), and the Large Synoptic Survey Telescope (LSST) will produce. The classification accuracy improves over the lifetime of the transient as more photometric data becomes available, and across the 12 transient classes, we obtain an average area under the receiver operating characteristic curve of 0.95 and 0.98 at early and late epochs, respectively. We demonstrate RAPID's ability to effectively provide early classifications of observed transients from the ZTF data stream. We have made RAPID available as an open-source software package (this https URL) for machine learning-based alert-brokers to use for the autonomous and quick classification of several thousand light curves within a few seconds.

[1]  Armin Rest,et al.  The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. I. Discovery of the Optical Counterpart Using the Dark Energy Camera , 2017, The Astrophysical Journal.

[2]  Jake Vanderplas,et al.  SNANA: A Public Software Package for Supernova Analysis , 2009, 0908.4280.

[3]  Tom Charnock,et al.  Deep Recurrent Neural Networks for Supernovae Classification , 2016, ArXiv.

[4]  Trisha Hinners,et al.  Machine Learning Techniques for Stellar Light Curve Classification , 2017, The Astronomical Journal.

[5]  M. Sullivan,et al.  SALT2: using distant supernovae to improve the use of type Ia supernovae as distance indicators , 2007, astro-ph/0701828.

[6]  A. A. Mahabal,et al.  The Catalina Real-Time Transient Survey (CRTS) , 2011, 1102.5004.

[7]  Pavlos Protopapas,et al.  Deep Learning for Image Sequence Classification of Astronomical Events , 2018, Publications of the Astronomical Society of the Pacific.

[8]  E. O. Ofek,et al.  Automating Discovery and Classification of Transients and Variable Stars in the Synoptic Survey Era , 2011, 1106.5491.

[9]  Oxford,et al.  Exploring the Optical Transient Sky with the Palomar Transient Factory , 2009, 0906.5355.

[10]  Z. Dai,et al.  A Long-lived Remnant Neutron Star after GW170817 Inferred from Its Associated Kilonova , 2017, The Astrophysical Journal.

[11]  Enrico Ramirez-Ruiz,et al.  Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event , 2017, Nature.

[12]  F. Feroz,et al.  A simple and robust method for automated photometric classification of supernovae using neural networks , 2012, 1208.1264.

[13]  J. Scargle Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data , 1982 .

[14]  Y. Watase,et al.  Real-time difference imaging analysis of moa galactic bulge observations during 2000 , 2001 .

[15]  Yoshua Bengio,et al.  Neural Machine Translation by Jointly Learning to Align and Translate , 2014, ICLR.

[16]  Carlos Aguirre,et al.  Deep multi-survey classification of variable stars , 2018, Monthly Notices of the Royal Astronomical Society.

[17]  E. Bachelet,et al.  SIDRA: a blind algorithm for signal detection in photometric surveys , 2015, 1511.03456.

[18]  Gijs Nelemans,et al.  Faint Thermonuclear Supernovae from AM Canum Venaticorum Binaries , 2007, astro-ph/0703578.

[19]  C. Scheidegger,et al.  Machine-learning-based Brokers for Real-time Classification of the LSST Alert Stream , 2018, 1801.07323.

[20]  Peter B. Stetson,et al.  Robust variable star detection techniques suitable for automated searches: new results for NGC 1866 , 1993 .

[21]  A. Moss Improved Photometric Classification of Supernovae using Deep Learning , 2018, 1810.06441.

[22]  N. S. Philip,et al.  Results from the Supernova Photometric Classification Challenge , 2010, 1008.1024.

[23]  D. Kasen,et al.  THERMONUCLEAR.Ia SUPERNOVAE FROM HELIUM SHELL DETONATIONS: EXPLOSION MODELS AND OBSERVABLES , 2010, 1002.2258.

[24]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[25]  Stefan Carlsson,et al.  CNN Features Off-the-Shelf: An Astounding Baseline for Recognition , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops.

[26]  E. Ishida,et al.  Kernel PCA for Type Ia supernovae photometric classification , 2012, 1201.6676.

[27]  D. Kasen,et al.  PAIR INSTABILITY SUPERNOVAE: LIGHT CURVES, SPECTRA, AND SHOCK BREAKOUT , 2011, 1101.3336.

[28]  S. Jha,et al.  Supernova Photometric Classification Challenge , 2010, 1001.5210.

[29]  J. Neill,et al.  Photometric Selection of High-Redshift Type Ia Supernova Candidates , 2005, astro-ph/0510857.

[30]  A. Mahabal,et al.  Optimizing spectroscopic follow-up strategies for supernova photometric classification with active learning , 2018, Monthly Notices of the Royal Astronomical Society.

[31]  A. A. Mahabal,et al.  The Photometric LSST Astronomical Time-series Classification Challenge PLAsTiCC: Selection of a Performance Metric for Classification Probabilities Balancing Diverse Science Goals , 2018, The Astronomical Journal.

[32]  Lars Bildsten,et al.  SUPERNOVA LIGHT CURVES POWERED BY YOUNG MAGNETARS , 2009, 0911.0680.

[33]  O. Lahav,et al.  Classification of multiwavelength transients with machine learning , 2018, 1811.08446.

[34]  J. Frieman,et al.  TESTING MODELS OF INTRINSIC BRIGHTNESS VARIATIONS IN TYPE Ia SUPERNOVAE AND THEIR IMPACT ON MEASURING COSMOLOGICAL PARAMETERS , 2012, 1209.2482.

[35]  R. Nichol,et al.  The Dark Energy Survey: more than dark energy - an overview , 2016, 1601.00329.

[36]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[37]  R. Kotak,et al.  Calcium-rich gap transients: tidal detonations of white dwarfs? , 2015, 1504.05584.

[38]  Chad M. Schafer,et al.  Semi-supervised learning for photometric supernova classification★ , 2011, 1103.6034.

[39]  N. Lomb Least-squares frequency analysis of unequally spaced data , 1976 .

[40]  Daniel Muthukrishna,et al.  DASH: Deep Learning for the Automated Spectral Classification of Supernovae and Their Hosts , 2019, The Astrophysical Journal.

[41]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[42]  Edward L. Fitzpatrick,et al.  Correcting for the Effects of Interstellar Extinction , 1998, astro-ph/9809387.

[43]  M. Sullivan,et al.  The Supernova Legacy Survey 3-year sample: Type Ia supernovae photometric distances and cosmological constraints , , 2010, 1010.4743.

[44]  O. Lahav,et al.  PHOTOMETRIC SUPERNOVA CLASSIFICATION WITH MACHINE LEARNING , 2016, 1603.00882.

[45]  Dovi Poznanski,et al.  Optical emission from a kilonova following a gravitational-wave-detected neutron-star merger , 2017, Nature.

[46]  Robert M. Quimby,et al.  SN 2005ap: A Most Brilliant Explosion , 2007, 0709.0302.

[47]  J. Prieto,et al.  THE SLOAN DIGITAL SKY SURVEY-II SUPERNOVA SURVEY: SEARCH ALGORITHM AND FOLLOW-UP OBSERVATIONS , 2007, 0708.2750.

[48]  B. A. Boom,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. , 2017, Physical review letters.

[49]  L. Ho,et al.  Berkeley Supernova Ia Program – I. Observations, data reduction and spectroscopic sample of 582 low-redshift Type Ia supernovae , 2012, 1202.2128.

[50]  D. Frail,et al.  CALCIUM-RICH GAP TRANSIENTS IN THE REMOTE OUTSKIRTS OF GALAXIES , 2011, 1111.6109.

[51]  E. Berger,et al.  Theoretical Models of Optical Transients. I. A Broad Exploration of the Duration–Luminosity Phase Space , 2017, 1707.08132.

[52]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[53]  Edward W. Dunham,et al.  PSST: The Planet Search Survey Telescope , 2004 .

[54]  Richard Kessler,et al.  PHOTOMETRIC SN IA CANDIDATES FROM THE THREE-YEAR SDSS-II SN SURVEY DATA , 2022 .

[55]  David A. van Dyk,et al.  STACCATO: a novel solution to supernova photometric classification with biased training sets , 2017, 1706.03811.

[56]  Enrico Ramirez-Ruiz,et al.  Weighing Black Holes Using Tidal Disruption Events , 2018, The Astrophysical Journal.

[57]  Eduardo Serrano,et al.  LSST: From Science Drivers to Reference Design and Anticipated Data Products , 2008, The Astrophysical Journal.

[58]  Gautham Narayan,et al.  The Photometric LSST Astronomical Time-series Classification Challenge (PLAsTiCC): Data set , 2018, 1810.00001.

[59]  N. Palanque-Delabrouille,et al.  Photometric classification of type Ia supernovae in the SuperNova Legacy Survey with supervised learning , 2016, 1608.05423.

[60]  Yan Liu,et al.  Recurrent Neural Networks for Multivariate Time Series with Missing Values , 2016, Scientific Reports.

[61]  Erich Elsen,et al.  Deep Speech: Scaling up end-to-end speech recognition , 2014, ArXiv.

[62]  E. Ofek,et al.  Two New Calcium-rich Gap Transients in Group and Cluster Environments , 2016, 1612.00454.

[63]  J. Morgan,et al.  Problems in the Analysis of Survey Data, and a Proposal , 1963 .

[64]  Yoshua Bengio,et al.  Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation , 2014, EMNLP.

[65]  E. Berger,et al.  The Magnetar Model for Type I Superluminous Supernovae. I. Bayesian Analysis of the Full Multicolor Light-curve Sample with MOSFiT , 2017, 1706.00825.

[66]  Bayesian Single-Epoch Photometric Classification of Supernovae , 2006, astro-ph/0610129.

[67]  N. E. Sommer,et al.  First Cosmology Results Using Type Ia Supernovae From the Dark Energy Survey: Survey Overview and Supernova Spectroscopy , 2018 .

[68]  N. Soker,et al.  An intermediate luminosity optical transient (ILOTs) model for the young stellar object ASASSN-15qi , 2016, 1609.00931.

[69]  E. Berger,et al.  AN INTERMEDIATE LUMINOSITY TRANSIENT IN NGC 300: THE ERUPTION OF A DUST-ENSHROUDED MASSIVE STAR , 2009, 0901.0710.

[70]  Gautham Narayan,et al.  ANTARES: a prototype transient broker system , 2014, Astronomical Telescopes and Instrumentation.

[71]  B. Stalder,et al.  ATLAS: A High-cadence All-sky Survey System , 2018, 1802.00879.

[72]  Austin B. Tomaney,et al.  Expanding the Realm of Microlensing Surveys with Difference Image Photometry , 1996 .

[73]  Gautham Narayan,et al.  ANTARES: progress towards building a 'broker' of time-domain alerts , 2016, Astronomical Telescopes + Instrumentation.

[74]  W. Arnett Type I supernovae. I. Analytic solutions for the early part of the light curve , 1982 .

[75]  University of Michigan,et al.  Analysis of RR Lyrae Stars in the Northern Sky Variability Survey , 2006, astro-ph/0606092.

[76]  A. Gal-yam The Most Luminous Supernovae , 2018, Annual Review of Astronomy and Astrophysics.

[77]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[78]  Marc Chaumont,et al.  PELICAN: deeP architecturE for the LIght Curve ANalysis , 2019, Astronomy & Astrophysics.

[79]  Richard Kessler,et al.  PHOTOMETRIC TYPE Ia SUPERNOVA CANDIDATES FROM THE THREE-YEAR SDSS-II SN SURVEY DATA , 2011, 1107.5106.

[80]  S. Smartt,et al.  Lasair: The Transient Alert Broker for LSST:UK , 2019, Research Notes of the AAS.

[81]  Melvin M. Varughese,et al.  Statistical classification techniques for photometric supernova typing , 2010, 1010.1005.

[82]  A. Möller,et al.  SuperNNova: an open-source framework for Bayesian, neural network-based supernova classification , 2019, Monthly Notices of the Royal Astronomical Society.

[83]  J. Prochaska,et al.  Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source , 2017, Science.

[84]  Peter B. Stetson,et al.  ON THE AUTOMATIC DETERMINATION OF LIGHT-CURVE PARAMETERS FOR CEPHEID VARIABLES , 1996 .

[85]  Brett Naul,et al.  A recurrent neural network for classification of unevenly sampled variable stars , 2017, Nature Astronomy.

[86]  S. E. Persson,et al.  TYPE Iax SUPERNOVAE: A NEW CLASS OF STELLAR EXPLOSION , 2012, 1212.2209.

[87]  Gautham Narayan,et al.  MOSFiT: Modular Open Source Fitter for Transients , 2017, 1710.02145.

[88]  Martin J. Rees,et al.  Tidal disruption of stars by black holes of 106–108 solar masses in nearby galaxies , 1988, Nature.

[89]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[90]  R. Poggiani Multi-messenger Observations of a Binary Neutron Star Merger , 2019, Proceedings of Frontier Research in Astrophysics – III — PoS(FRAPWS2018).

[91]  R. Foley,et al.  CLASSIFYING SUPERNOVAE USING ONLY GALAXY DATA , 2013, 1309.2630.