A general-purpose optimization program for engineering design

Abstract A new general-purpose optimization program for engineering design is described. ADS (Automated Design Synthesis) is a FORTRAN program for nonlinear constrained (or unconstrained) function minimization. The optimization process is segmented into three levels: Strategy, Optimizer, and One-dimensional search. At each level, several options are available so that a total of nearly 100 possible combinations can be created. An example of available combinations is the Augmented Lagrange Multiplier method, using the BFGS variable metric unconstrained minimization together with polynomial interpolation for the one-dimensional search. Scaling is included to improve the numerical conditioning. The program is demonstrated with several engineering design examples.

[1]  Anthony V. Fiacco,et al.  Nonlinear programming;: Sequential unconstrained minimization techniques , 1968 .

[2]  Garret N. Vanderplaats,et al.  Numerical Optimization Techniques for Engineering Design: With Applications , 1984 .

[3]  C. G. Broyden The Convergence of a Class of Double-rank Minimization Algorithms 1. General Considerations , 1970 .

[4]  R. Fletcher,et al.  A New Approach to Variable Metric Algorithms , 1970, Comput. J..

[5]  M. J. D. Powell,et al.  Algorithms for nonlinear constraints that use lagrangian functions , 1978, Math. Program..

[6]  G. N. Vanderplaats,et al.  ADS-1 - A new general-purpose optimization program. [automated design synthesis] , 1984 .

[7]  M. J. D. Powell,et al.  A fast algorithm for nonlinearly constrained optimization calculations , 1978 .

[8]  D. Shanno Conditioning of Quasi-Newton Methods for Function Minimization , 1970 .

[9]  G. Vanderplaats,et al.  Structural optimization by methods of feasible directions. , 1973 .

[10]  David Mautner Himmelblau,et al.  Applied Nonlinear Programming , 1972 .

[11]  C. M. Reeves,et al.  Function minimization by conjugate gradients , 1964, Comput. J..

[12]  J. Cassis,et al.  On implementation of the extended interior penalty function. [optimum structural design] , 1976 .

[13]  B. Prasad,et al.  A class of generalized variable penalty methods for nonlinear programming , 1981 .

[14]  G. Zoutendijk,et al.  Methods of Feasible Directions , 1962, The Mathematical Gazette.

[15]  J. H. Starnes,et al.  Applications of a quadratic extended interior penalty function for structural optimization , 1975 .

[16]  Roman Baldur,et al.  Structural Optimization by Inscribed Hyperspheres , 1972 .

[17]  R. Rockafellar The multiplier method of Hestenes and Powell applied to convex programming , 1973 .

[18]  C. D. Mote,et al.  Optimization methods for engineering design , 1971 .

[19]  Fred Moses,et al.  Optimum Structural Design Using Linear Programming , 1964 .

[20]  Roger Fletcher,et al.  A Rapidly Convergent Descent Method for Minimization , 1963, Comput. J..

[21]  J. E. Kelley,et al.  The Cutting-Plane Method for Solving Convex Programs , 1960 .

[22]  Garret N. Vanderplaats,et al.  ADS-1 - A new general-purpose optimization program , 1983 .

[23]  Johannes Moe,et al.  Automated Design of Frame Structures , 1971 .

[24]  M. J. D. Powell,et al.  THE CONVERGENCE OF VARIABLE METRIC METHODS FOR NONLINEARLY CONSTRAINED OPTIMIZATION CALCULATIONS , 1978 .

[25]  Raphael T. Haftka,et al.  Applications of a Quadratic Extended Interior for Structural Optimization Penalty Function , 1976 .

[26]  Garret N. Vanderplaats,et al.  A robust Feasible Directions algorithm for design synthesis , 1983 .

[27]  Lucien A. Schmit,et al.  Configuration Optimization of Trusses , 1981 .

[28]  D. Goldfarb A family of variable-metric methods derived by variational means , 1970 .