Relative enumerability and 1-genericity

A set of natural numbers B is computably enumerable in and strictly above (or c.e.a. for short) another set C if C <T B and B is computably enumerable in C. A Turing degree b is c.e.a. c if b and c respectively contain B and C as above. In this paper, it is shown that if b is c.e.a. c then b is c.e.a. some 1-generic g.

[1]  J. C. E. Dekker,et al.  A theorem on hypersimple sets , 1954 .

[2]  R. Soare Recursively enumerable sets and degrees , 1987 .

[3]  Liang Yu,et al.  Lowness for genericity , 2006, Arch. Math. Log..

[4]  Richard A. Shore,et al.  Domination, forcing, array nonrecursiveness and relative recursive enumerability , 2012, The Journal of Symbolic Logic.

[5]  Masahiro Kumabe Relative Recursive Enumerability of Generic Degrees , 1991, J. Symb. Log..

[6]  Masahiro Kumabe,et al.  Degrees of generic sets , 1996 .

[7]  Wei Wang,et al.  Bounding non-GL2 and R.E.A. , 2009, The Journal of Symbolic Logic.

[8]  Alistair H. Lachlan,et al.  The Continuity of Cupping to 0' , 1993, Ann. Pure Appl. Log..