A conjecture on bipartite graphical regular representations

[1]  Pablo Spiga,et al.  On the existence of graphical Frobenius representations and their asymptotic enumeration , 2020, J. Comb. Theory, Ser. B.

[2]  Yan-Quan Feng,et al.  On the existence and the enumeration of bipartite regular representations of Cayley graphs over abelian groups , 2020, J. Graph Theory.

[3]  Andrzej Kisielewicz,et al.  Cyclic Permutation Groups that are Automorphism Groups of Graphs , 2019, Graphs and Combinatorics.

[4]  P. Spiga,et al.  Asymptotic enumeration of Cayley digraphs , 2018, Israel Journal of Mathematics.

[5]  Andrzej Kisielewicz,et al.  Cyclic Automorphism Groups of Graphs and Edge-Colored Graphs , 2018, Electron. Notes Discret. Math..

[6]  Pablo Spiga,et al.  On the Existence of Frobenius Digraphical Representations , 2018, Electron. J. Comb..

[7]  Thomas W. Tucker,et al.  Graphical Frobenius representations , 2018 .

[8]  P. Spiga,et al.  Classification of finite groups that admit an oriented regular representation , 2017, Bulletin of the London Mathematical Society.

[9]  Joy Morris,et al.  Every finite non-solvable group admits an oriented regular representation , 2017, J. Comb. Theory, Ser. B.

[10]  P. Spiga,et al.  Vertex transitive graphs G with χ_D(G) > χ(G) and small automorphism group , 2017, Ars Math. Contemp..

[11]  Edward Dobson,et al.  Cayley graphs on abelian groups , 2013, Comb..

[12]  Mariusz Grech,et al.  Graphical cyclic permutation groups , 2012, Discret. Math..

[13]  László Pyber,et al.  On a conjecture of G.E. Wall , 2007 .

[14]  D. MacHale,et al.  Two‐Groups in Which an Automorphism Inverts Precisely Half the Elements , 1998 .

[15]  Walter M. Potter Nonsolvable groups with an automorphism inverting many elements , 1988 .

[16]  László Babai,et al.  Finite digraphs with given regular automorphism groups , 1980 .

[17]  W. Imrich,et al.  Tournaments with given regular group , 1978 .

[18]  Wilfried Imrich,et al.  On graphical regular representations of cyclic extensions of groups , 1974 .

[19]  M. Watkins,et al.  Graphical regular representations of alternating, symmetric, and miscellaneous small groups , 1973 .

[20]  M. Watkins,et al.  Graphical Regular Representations of Non-Abelian Groups, I , 1972, Canadian Journal of Mathematics.

[21]  M. Watkins,et al.  Graphical Regular Representations of Non-Abelian Groups, II , 1972, Canadian Journal of Mathematics.

[22]  Lewis A. Nowitz,et al.  On graphical regular representations of direct products of groups , 1972 .

[23]  D. MacHale,et al.  Groups with automorphisms inverting most elements , 1972 .

[24]  M. Watkins,et al.  On the action of non-Abelian groups on graphs , 1971 .

[25]  G. E. Wall Some applications of the Eulerian functions of a finite group , 1961, Journal of the Australian Mathematical Society.

[26]  Pablo Spiga,et al.  Finite groups admitting an oriented regular representation , 2018, J. Comb. Theory, Ser. A.

[27]  M. Watkins,et al.  On graphical regular representations of Cn × Q , 1972 .