A Memory–Efficient Noninteger–Order Discrete–Time State–Space Model of a Heat Transfer Process

Abstract A new, state space, discrete-time, and memory-efficient model of a one-dimensional heat transfer process is proposed. The model is derived directly from a time-continuous, state-space semigroup one. Its discrete version is obtained via a continuous fraction expansion method applied to the solution of the state equation. Fundamental properties of the proposed model, such as decomposition, stability, accuracy and convergence, are also discussed. Results of experiments show that the model yields good accuracy in the sense of the mean square error, and its size is significantly smaller than that of the model employing the well-known power series expansion approximation.

[1]  Wojciech Mitkowski Approximation of Fractional Diffusion-Wave Equation , 2011 .

[2]  A. Peterson,et al.  Discrete Fractional Calculus , 2016 .

[3]  M. Łukaniszyn,et al.  A Comparative Analysis of Laguerre-Based Approximators to the Grünwald-Letnikov Fractional-Order Difference , 2015 .

[4]  Krzysztof J. Latawiec,et al.  Stability analysis for discrete-time fractional-order LTI state-space systems. Part II: New stability criterion for FD-based systems , 2013 .

[5]  T. Kaczorek,et al.  Fractional Linear Systems and Electrical Circuits , 2014 .

[6]  Dominik Sierociuk,et al.  Diffusion process modeling by using fractional-order models , 2015, Appl. Math. Comput..

[7]  Krzysztof Oprzedkiewicz,et al.  Modeling heat distribution with the use of a non-integer order, state space model , 2016, Int. J. Appl. Math. Comput. Sci..

[8]  Krishnan Balachandran,et al.  On the controllability of fractional dynamical systems , 2012, Int. J. Appl. Math. Comput. Sci..

[9]  Tadeusz Kaczorek,et al.  Selected Problems of Fractional Systems Theory , 2011 .

[10]  Krzysztof Oprzędkiewicz,et al.  A new algorithm for a CFE-approximated solution of a discrete-time noninteger-order state equation , 2017 .

[11]  Krzysztof Oprzędkiewicz AN OBSERVABILITY PROBLEM FOR A CLASS OF UNCERTAIN-PARAMETER LINEAR DYNAMIC SYSTEMS , 2005 .

[12]  Paweł Skruch,et al.  The application of fractional-order models for thermal process modelling inside buildings , 2016 .

[13]  Delfim F. M. Torres,et al.  Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives , 2010, 1007.2937.

[14]  Krzysztof Oprzedkiewicz,et al.  An Accuracy Estimation for a Non Integer Order, Discrete, State Space Model of Heat Transfer Process , 2017, AUTOMATION.

[15]  Mohamed Darouach,et al.  Design of unknown input fractional-order observers for fractional-order systems , 2013, Int. J. Appl. Math. Comput. Sci..

[16]  Andreas Rauh,et al.  An integrodifferential approach to modeling, control, state estimation and optimization for heat transfer systems , 2016, Int. J. Appl. Math. Comput. Sci..

[17]  Luigi Fortuna,et al.  Fractional Order Systems: Modeling and Control Applications , 2010 .

[18]  Krzysztof Oprzedkiewicz,et al.  Parameter identification for non integer order, state space models of heat plant , 2016, 2016 21st International Conference on Methods and Models in Automation and Robotics (MMAR).

[19]  Krzysztof Bartecki,et al.  A general transfer function representation for a class of hyperbolic distributed parameter systems , 2013, Int. J. Appl. Math. Comput. Sci..

[20]  K. Moore,et al.  Discretization schemes for fractional-order differentiators and integrators , 2002 .

[21]  Piotr Ostalczyk,et al.  Discrete Fractional Calculus: Applications In Control And Image Processing , 2015 .

[22]  Krzysztof Oprzędkiewicz,et al.  A non integer order, state space model for one dimensional heat transfer process , 2016 .

[23]  Ciprian G. Gal,et al.  Elliptic and parabolic equations with fractional diffusion and dynamic boundary conditions , 2016 .

[24]  I. Turner,et al.  Numerical methods for fractional partial differential equations with Riesz space fractional derivatives , 2010 .

[25]  Ivo Petráš,et al.  FRACTIONAL – ORDER FEEDBACK CONTROL OF A DC MOTOR , 2009 .

[26]  S. Das,et al.  Functional Fractional Calculus for System Identification and Controls , 2007 .

[27]  Krishnan Balachandran,et al.  Controllability of nonlinear implicit fractional integrodifferential systems , 2014, Int. J. Appl. Math. Comput. Sci..

[28]  Krzysztof J. Latawiec,et al.  Stability analysis for discrete-time fractional-order LTI state-space systems. Part I: New necessary and sufficient conditions for the asymptotic stability , 2013 .

[29]  Thorsten Gerber,et al.  Semigroups Of Linear Operators And Applications To Partial Differential Equations , 2016 .

[30]  Mark M. Meerschaert,et al.  Inhomogeneous Fractional Diffusion Equations , 2005 .

[31]  Mohamad Adnan Al-Alaoui,et al.  Novel digital integrator and differentiator , 1993 .

[32]  Tadeusz Kaczorek,et al.  Reduced-order fractional descriptor observers for a class of fractional descriptor continuous-time nonlinear systems , 2016, Int. J. Appl. Math. Comput. Sci..

[33]  Ivo Petraÿs,et al.  FRACTIONAL - ORDER FEEDBACK CONTROL OF A DC MOTOR , 2009 .

[34]  I. Podlubny Fractional differential equations , 1998 .

[35]  A. Kochubei Fractional-Parabolic Systems , 2010, 1009.4996.

[36]  Dominik Sierociuk,et al.  Some applications of fractional order calculus , 2010 .