Creation of Reusable Bioinformatics Workflows for Reproducible Analysis of LC-MS Proteomics Data

[1]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[2]  David L. Tabb,et al.  QC Metrics from CPTAC Raw LC-MS/MS Data Interpreted through Multivariate Statistics , 2014, Analytical chemistry.

[3]  John Chilton,et al.  The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update , 2016, Nucleic Acids Res..

[4]  Natalie I. Tasman,et al.  A Cross-platform Toolkit for Mass Spectrometry and Proteomics , 2012, Nature Biotechnology.

[5]  Lennart Martens,et al.  mzML—a Community Standard for Mass Spectrometry Data* , 2010, Molecular & Cellular Proteomics.

[6]  Martin Eisenacher,et al.  In-depth analysis of protein inference algorithms using multiple search engines and well-defined metrics. , 2017, Journal of proteomics.

[7]  Norman W. Paton,et al.  Improving sensitivity in proteome studies by analysis of false discovery rates for multiple search engines , 2009, Proteomics.

[8]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[9]  Sven Rahmann,et al.  Snakemake--a scalable bioinformatics workflow engine. , 2012, Bioinformatics.

[10]  Thorsten Meinl,et al.  KNIME: The Konstanz Information Miner , 2007, GfKl.

[11]  Martin Eisenacher,et al.  Search and Decoy: The Automatic Identification of Mass Spectra , 2012, Quantitative Methods in Proteomics.

[12]  Carole A. Goble,et al.  myExperiment: a repository and social network for the sharing of bioinformatics workflows , 2010, Nucleic Acids Res..

[13]  K. Reinert,et al.  OpenMS: a flexible open-source software platform for mass spectrometry data analysis , 2016, Nature Methods.

[14]  Christian Fufezan,et al.  Ursgal, Universal Python Module Combining Common Bottom-Up Proteomics Tools for Large-Scale Analysis. , 2016, Journal of proteome research.

[15]  Lukas Käll,et al.  Solution to Statistical Challenges in Proteomics Is More Statistics, Not Less. , 2015, Journal of proteome research.

[16]  Anton Nekrutenko,et al.  Ten Simple Rules for Reproducible Computational Research , 2013, PLoS Comput. Biol..

[17]  Martin Eisenacher,et al.  PIA: An Intuitive Protein Inference Engine with a Web-Based User Interface. , 2015, Journal of proteome research.