Intercellular Communication in the Vascular Wall: A Modeling Perspective

Please cite this paper as Nagaraja S, Kapela A, Tsoukias NM. Intercellular communication in the vascular wall: a modeling perspective. Microcirculation 19: 391‐402, 2012.

[1]  Hikaru Suzuki,et al.  Dependency of endothelial cell function on vascular smooth muscle cells in guinea-pig mesenteric arteries and arterioles. , 2005, Journal of smooth muscle research = Nihon Heikatsukin Gakkai kikanshi.

[2]  C. Garland,et al.  Evidence for a Differential Cellular Distribution of Inward Rectifier K Channels in the Rat Isolated Mesenteric Artery , 2003, Journal of Vascular Research.

[3]  E. Vigmond,et al.  Inward rectifying potassium channels facilitate cell-to-cell communication in hamster retractor muscle feed arteries. , 2006, American journal of physiology. Heart and circulatory physiology.

[4]  W. Jackson Ion channels and vascular tone. , 2000, Hypertension.

[5]  T. Griffith,et al.  Connexins and gap junctions in the EDHF phenomenon and conducted vasomotor responses , 2010, Pflügers Archiv - European Journal of Physiology.

[6]  M. Iida,et al.  Critical Role Of Gap Junctions In Endothelium‐Dependent Hyperpolarization In Rat Mesenteric Arteries , 2002, Clinical and experimental pharmacology & physiology.

[7]  E. Beyer,et al.  Characterization of gap junction channels in A7r5 vascular smooth muscle cells. , 1991, The American journal of physiology.

[8]  Donald G Welsh,et al.  Defining electrical communication in skeletal muscle resistance arteries: a computational approach , 2005, The Journal of physiology.

[9]  B. Isakson,et al.  The Myoendothelial Junction: Breaking through the Matrix? , 2009, Microcirculation.

[10]  F. Edwards,et al.  Intercellular electrical communication among smooth muscle and endothelial cells in guinea‐pig mesenteric arterioles , 2001, The Journal of physiology.

[11]  C. Aalkjær,et al.  Hypothesis for the Initiation of Vasomotion , 2001, Circulation research.

[12]  C. Garland,et al.  Enhanced spontaneous Ca2+ events in endothelial cells reflect signalling through myoendothelial gap junctions in pressurized mesenteric arteries. , 2008, Cell calcium.

[13]  Timothy L Domeier,et al.  Propagation of calcium waves along endothelium of hamster feed arteries. , 2007, American journal of physiology. Heart and circulatory physiology.

[14]  A Krogh,et al.  Studies on the physiology of capillaries: III. The innervation of the blood vessels in the hind legs of the frog. , 2022, The Journal of physiology.

[15]  N. Tsoukias,et al.  Endothelial Ca2+ wavelets and the induction of myoendothelial feedback. , 2012, American journal of physiology. Cell physiology.

[16]  G. Christ,et al.  Dynamic gap junctional communication: a delimiting model for tissue responses. , 1994, Biophysical journal.

[17]  S. Davis,et al.  Regulation of blood flow in the mammary microvasculature. , 1996, Journal of dairy science.

[18]  B. Duling,et al.  Connexins: gaps in our knowledge of vascular function. , 2004, Physiology.

[19]  K. Dora Coordination of vasomotor responses by the endothelium. , 2010, Circulation journal : official journal of the Japanese Circulation Society.

[20]  S. Segal,et al.  Sympathetic neural inhibition of conducted vasodilatation along hamster feed arteries: complementary effects of α1‐ and α2‐adrenoreceptor activation , 2005 .

[21]  C. Garland,et al.  Modulation of Endothelial Cell KCa3.1 Channels During Endothelium-Derived Hyperpolarizing Factor Signaling in Mesenteric Resistance Arteries , 2008, Circulation research.

[22]  Donald G Welsh,et al.  Endothelial and smooth muscle cell conduction in arterioles controlling blood flow. , 1998, American journal of physiology. Heart and circulatory physiology.

[23]  Adam Kapela,et al.  Multiscale FEM Modeling of Vascular Tone: From Membrane Currents to Vessel Mechanics , 2011, IEEE Transactions on Biomedical Engineering.

[24]  S. Boitano,et al.  Site-Specific Connexin Phosphorylation Is Associated with Reduced Heterocellular Communication between Smooth Muscle and Endothelium , 2009, Journal of Vascular Research.

[25]  B. Duling,et al.  Endothelial cell signaling during conducted vasomotor responses. , 2003, American journal of physiology. Heart and circulatory physiology.

[26]  Jean-Jacques Meister,et al.  Ca2+ dynamics in a population of smooth muscle cells: modeling the recruitment and synchronization. , 2004, Biophysical journal.

[27]  S S Segal,et al.  Microvascular recruitment in hamster striated muscle: role for conducted vasodilation. , 1991, The American journal of physiology.

[28]  F. Pedersen,et al.  Bestrophin is important for the rhythmic but not the tonic contraction in rat mesenteric small arteries. , 2011, Cardiovascular research.

[29]  H. Nilsson,et al.  Vasomotion has chloride-dependency in rat mesenteric small arteries , 2008, Pflügers Archiv - European Journal of Physiology.

[30]  N. Holstein-Rathlou,et al.  Conducted vasomotor responses in arterioles: characteristics, mechanisms and physiological significance. , 1999, Acta physiologica Scandinavica.

[31]  R. M. Lee,et al.  Arterial internal elastic lamina holes: relationship to function? , 2009, Journal of anatomy.

[32]  S. Sandow,et al.  Spatial separation of endothelial small‐ and intermediate‐conductance calcium‐activated potassium channels (KCa) and connexins: possible relationship to vasodilator function? , 2006, Journal of anatomy.

[33]  Adam Kapela,et al.  A mathematical model of plasma membrane electrophysiology and calcium dynamics in vascular endothelial cells. , 2007, American journal of physiology. Cell physiology.

[34]  G. Christ,et al.  Gap junctions in vascular tissues. Evaluating the role of intercellular communication in the modulation of vasomotor tone. , 1996, Circulation research.

[35]  G. Hirst,et al.  An analysis of excitatory junctional potentials recorded from arterioles. , 1978, The Journal of physiology.

[36]  J. Meister,et al.  Evidence for signaling via gap junctions from smooth muscle to endothelial cells in rat mesenteric arteries: possible implication of a second messenger. , 2005, Cell calcium.

[37]  Guy Salama,et al.  Propagated Endothelial Ca2+ Waves and Arteriolar Dilation In Vivo: Measurements in Cx40BAC-GCaMP2 Transgenic Mice , 2007, Circulation research.

[38]  C. Garland,et al.  Spreading vasodilatation in resistance arteries. , 2005, Journal of smooth muscle research = Nihon Heikatsukin Gakkai kikanshi.

[39]  L. Stryer,et al.  Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. , 1992, Science.

[40]  S. Segal,et al.  Sympathetic neural inhibition of conducted vasodilatation along hamster feed arteries: complementary effects of alpha1- and alpha2-adrenoreceptor activation. , 2005, The Journal of physiology.

[41]  I. McSherry,et al.  Endothelial cell Ca2+ increases are independent of membrane potential in pressurized rat mesenteric arteries. , 2005, Cell calcium.

[42]  G. G. Emerson,et al.  Conduction of hyperpolarization along hamster feed arteries: augmentation by acetylcholine. , 2002, American journal of physiology. Heart and circulatory physiology.

[43]  R. Berne,et al.  Propagated Vasodilation in the Microcirculation of the Hamster Cheek Pouch , 1970, Circulation research.

[44]  Anastasios Bezerianos,et al.  A mathematical model of Ca2+ dynamics in rat mesenteric smooth muscle cell: agonist and NO stimulation. , 2008, Journal of theoretical biology.

[45]  Mark S Taylor,et al.  Functional architecture of inositol 1,4,5-trisphosphate signaling in restricted spaces of myoendothelial projections , 2008, Proceedings of the National Academy of Sciences.

[46]  L. Kuo,et al.  Activation of Barium-Sensitive Inward Rectifier Potassium Channels Mediates Remote Dilation of Coronary Arterioles , 2001, Circulation.

[47]  Adam Kapela,et al.  A mathematical model of vasoreactivity in rat mesenteric arterioles. II. Conducted vasoreactivity. , 2010, American journal of physiology. Heart and circulatory physiology.

[48]  J. Meister,et al.  Propagation of fast and slow intercellular Ca(2+) waves in primary cultured arterial smooth muscle cells. , 2011, Cell calcium.

[49]  P. G. Sørensen,et al.  BKCa and KV channels limit conducted vasomotor responses in rat mesenteric terminal arterioles , 2011, Pflügers Archiv - European Journal of Physiology.

[50]  N. Stergiopulos,et al.  Simultaneous arterial calcium dynamics and diameter measurements: application to myoendothelial communication. , 2001, American journal of physiology. Heart and circulatory physiology.

[51]  Niels-Henrik Holstein-Rathlou,et al.  A model of smooth muscle cell synchronization in the arterial wall. , 2007, American journal of physiology. Heart and circulatory physiology.

[52]  K. Campbell,et al.  Are voltage-dependent ion channels involved in the endothelial cell control of vasomotor tone? , 2007, American journal of physiology. Heart and circulatory physiology.

[53]  Jean-Jacques Meister,et al.  Mechanisms of propagation of intercellular calcium waves in arterial smooth muscle cells. , 2010, Biophysical journal.

[54]  Jaimit Parikh,et al.  Multiple factors influence calcium synchronization in arterial vasomotion. , 2012, Biophysical journal.

[55]  Timothy L Domeier,et al.  Electromechanical and pharmacomechanical signalling pathways for conducted vasodilatation along endothelium of hamster feed arteries , 2007, The Journal of physiology.

[56]  N. Standen,et al.  The properties and distribution of inward rectifier potassium currents in pig coronary arterial smooth muscle. , 1996, The Journal of physiology.

[57]  A. Popel,et al.  A computational study of the effect of vasomotion on oxygen transport from capillary networks. , 2001, Journal of theoretical biology.

[58]  C. Hill,et al.  Attenuation of conducted vasodilatation in rat mesenteric arteries during hypertension: role of inwardly rectifying potassium channels , 2004, The Journal of physiology.

[59]  James Watras,et al.  Bell-shaped calcium-response curves of lns(l,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum , 1991, Nature.

[60]  Jean-Jacques Meister,et al.  Role of the endothelium on arterial vasomotion. , 2005, Biophysical journal.

[61]  B. Duling,et al.  Ca2+ and Inositol 1,4,5-Trisphosphate–Mediated Signaling Across the Myoendothelial Junction , 2007, Circulation research.

[62]  M. Fujishima,et al.  The importance of the hyperpolarizing mechanism increases as the vessel size decreases in endothelium-dependent relaxations in rat mesenteric circulation. , 1996, Journal of cardiovascular pharmacology.

[63]  Kenichi Goto,et al.  Non‐linear relationship between hyperpolarisation and relaxation enables long distance propagation of vasodilatation , 2011, The Journal of physiology.

[64]  B. Isakson Localized expression of an Ins(1,4,5)P3 receptor at the myoendothelial junction selectively regulates heterocellular Ca2+ communication , 2008, Journal of Cell Science.

[65]  M. Blaustein,et al.  The Pump, the Exchanger, and Endogenous Ouabain: Signaling Mechanisms That Link Salt Retention to Hypertension , 2009, Hypertension.

[66]  Anastasios Bezerianos,et al.  A mathematical model of vasoreactivity in rat mesenteric arterioles: I. Myoendothelial communication , 2009, Microcirculation.

[67]  D C Spray,et al.  Gap junctional conductance and permeability are linearly related. , 1986, Science.

[68]  E. Vigmond,et al.  KIR channels function as electrical amplifiers in rat vascular smooth muscle , 2008, The Journal of physiology.

[69]  C. Garland,et al.  Spreading dilatation in rat mesenteric arteries associated with calcium‐independent endothelial cell hyperpolarization , 2004, The Journal of physiology.

[70]  M. Hines,et al.  Simulating the Spread of Membrane Potential Changes in Arteriolar Networks , 2001, Microcirculation.

[71]  C. Garland,et al.  Small‐ and Intermediate‐Conductance Calcium‐Activated K+ Channels Provide Different Facets of Endothelium‐Dependent Hyperpolarization in Rat Mesenteric Artery , 2003, The Journal of physiology.

[72]  C. de Wit,et al.  Different pathways with distinct properties conduct dilations in the microcirculation in vivo. , 2010, Cardiovascular research.

[73]  Daniel Siegl,et al.  Myoendothelial Coupling Is Not Prominent in Arterioles Within the Mouse Cremaster Microcirculation In Vivo , 2005, Circulation research.

[74]  Jean-Jacques Meister,et al.  Emergent properties of electrically coupled smooth muscle cells , 2005, Bulletin of mathematical biology.

[75]  Monica M Lurtz,et al.  Intracellular calcium regulation of connexin43. , 2007, American journal of physiology. Cell physiology.

[76]  G. Christ,et al.  Biophysical characteristics of gap junctions in vascular wall cells: implications for vascular biology and disease. , 2000, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.

[77]  R. Keynes The ionic channels in excitable membranes. , 1975, Ciba Foundation symposium.

[78]  A. Krogh,et al.  Studies on the physiology of capillaries , 1922 .

[79]  J. Nakai,et al.  Propagated Endothelial Ca 2 Waves and Arteriolar Dilation In Vivo Measurements in Cx 40 BAC – GCaMP 2 Transgenic Mice , 2007 .

[80]  K A Dora,et al.  Elevation of intracellular calcium in smooth muscle causes endothelial cell generation of NO in arterioles. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[81]  J. Burt,et al.  Gap junction function in vascular smooth muscle: influence of serotonin. , 1995, The American journal of physiology.