Observability of hybrid systems and turing machines

In this paper we discuss the observability of hybrid systems and turing machines. We give an elementary example to show that observability is undecidable for turing machines with output. Since many classes of system simulate turing machines, we can then show that observability for these classes is undecidable. We discuss the observability of piecewise-affine hybrid systems, and give examples illustrating different observability properties.

[1]  Eduardo Sontag On the Observability of Polynomial Systems, I: Finite-Time Problems , 1979 .

[2]  Amir Pnueli,et al.  Reachability Analysis of Dynamical Systems Having Piecewise-Constant Derivatives , 1995, Theor. Comput. Sci..

[3]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[4]  John N. Tsitsiklis,et al.  A survey of computational complexity results in systems and control , 2000, Autom..

[5]  van Jan Schuppen,et al.  Reduction of affine systems on polytopes , 2002 .

[6]  Philip K. Hooper The undecidability of the Turing machine immortality problem , 1966, Journal of Symbolic Logic.

[7]  Jan H. van Schuppen,et al.  Observability of Piecewise-Affine Hybrid Systems , 2004, HSCC.

[8]  John N. Tsitsiklis,et al.  The Stability of Saturated Linear Dynamical Systems Is Undecidable , 2000, J. Comput. Syst. Sci..

[9]  Eitan M. Gurari,et al.  Introduction to the theory of computation , 1989 .

[10]  Eduardo Sontag,et al.  Observability of linear systems with saturated outputs , 1994 .

[11]  Cristopher Moore,et al.  Generalized shifts: unpredictability and undecidability in dynamical systems , 1991 .

[12]  John N. Tsitsiklis,et al.  Deciding stability and mortality of piecewise affine dynamical systems , 2001, Theor. Comput. Sci..

[13]  Michel Cosnard,et al.  Computability with Low-Dimensional Dynamical Systems , 1994, Theor. Comput. Sci..

[14]  Kenichi Morita,et al.  Universality of a Reversible Two-Counter Machine , 1996, Theor. Comput. Sci..

[15]  Hava T. Siegelmann,et al.  On the Computational Power of Neural Nets , 1995, J. Comput. Syst. Sci..

[16]  S. Shankar Sastry,et al.  Observability of Linear Hybrid Systems , 2003, HSCC.

[17]  Eduardo Sontag On the Observability of Polynomial Systems. , 1977 .