A broadband high spectral brightness fiber-based two-photon source.

After characterizing the Raman scattering in a fused silica polarization-maintaining microstructure optical fiber, we built a fiber-based two-photon light source of high spectral brightness, broad spectral range, and very low noise background at room temperature. The resulting bright low-noise two-photon light can be used for a number of quantum information applications.

[1]  Jun Chen,et al.  Generation of high purity telecom-band entangled photon-pairs in dispersion-shifted fiber , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[2]  F. Yaman,et al.  Photon-pair generation by four-wave mixing in optical fibers. , 2006, Optics letters.

[3]  L J Wang,et al.  Generation of correlated photon pairs in a microstructure fiber. , 2005, Optics letters.

[4]  L J Wang,et al.  Efficient generation of correlated photon pairs in a microstructure fiber. , 2005, Optics letters.

[5]  Jeremie Fulconis,et al.  Photonic crystal fiber source of correlated photon pairs. , 2005 .

[6]  F. Wong,et al.  Efficient and spectrally bright source of polarization-entangled photons , 2004, quant-ph/0409162.

[7]  Paul L Voss,et al.  Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band. , 2004, Physical review letters.

[8]  Christopher Edward Kuklewicz,et al.  Ultrabright source of polarization-entangled photons from cavity-enhanced downconversion , 2005 .

[9]  Jun Chen,et al.  All-fiber photon-pair source for quantum communications: Improved generation of correlated photons. , 2004 .

[10]  H. Takesue,et al.  Generation of polarization-entangled photon pairs and violation of Bell's inequality using spontaneous four-wave mixing in a fiber loop , 2004, quant-ph/0408032.

[11]  Paul L. Voss,et al.  Raman-effect induced noise limits on χ(3) parametric amplifiers and wavelength converters , 2004 .

[12]  H. Briegel,et al.  Experimental demonstration of five-photon entanglement and open-destination teleportation , 2004, Nature.

[13]  F. Wong,et al.  Efficient generation of tunable photon pairs at 0.8 and 1.6 microm. , 2002, Optics letters.

[14]  P. Kumar,et al.  All-fiber photon-pair source for quantum communications , 2002, IEEE Photonics Technology Letters.

[15]  S. V. Chernikov,et al.  Broadband Raman gain characterisation in various optical fibres , 2001 .

[16]  P. Kumar,et al.  Observation of twin-beam-type quantum correlation in optical fiber. , 2001, Optics letters.

[17]  Christian Kurtsiefer,et al.  High efficiency entangled photon pair collection in type II parametric fluorescence , 2001, quant-ph/0101074.

[18]  N. Gisin,et al.  Highly efficient photon-pair source using periodically poled lithium niobate waveguide , 2000, quant-ph/0012053.

[19]  C. Hong,et al.  Generation of correlated photons via four-wave mixing in optical fibres , 2000, QELS 2000.

[20]  J R Taylor,et al.  Temperature-dependent gain and noise in fiber Raman amplifiers. , 1999, Optics letters.

[21]  Andrew G. White,et al.  Ultra-bright source of polarization-entangled photons , 1998, quant-ph/9810003.

[22]  P. Russell,et al.  Endlessly single-mode photonic crystal fiber. , 1997, Optics letters.

[23]  E. Desurvire,et al.  Theory and implementation of a Raman active fiber delay line , 1986 .

[24]  R. Stolen,et al.  Low-Frequency and Low-Temperature Raman Scattering in Silica Fibers , 1982 .

[25]  David C. Burnham,et al.  Observation of Simultaneity in Parametric Production of Optical Photon Pairs , 1970 .