The Fractional Quadratic-Form Identity and Hamiltonian Structure of an Integrable Coupling of the Fractional Broer-Kaup Hierarchy

A fractional quadratic-form identity is derived from a general isospectral problem of fractional order, which is devoted to constructing the Hamiltonian structure of an integrable coupling of the fractional BK hierarchy. The method can be generalized to other fractional integrable couplings.

[1]  Kiran M. Kolwankar,et al.  Local Fractional Fokker-Planck Equation , 1998 .

[2]  Yufeng Zhang,et al.  The quadratic-form identity for constructing the Hamiltonian structure of integrable systems , 2005 .

[3]  G. Zaslavsky Chaos, fractional kinetics, and anomalous transport , 2002 .

[4]  D.Baleanu,et al.  Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives , 2005, hep-th/0510071.

[5]  A generalized AKNS hierarchy and its bi-Hamiltonian structures , 2005 .

[6]  Jin-Cun Liu,et al.  New approximate solution for time-fractional coupled KdV equations by generalised differential transform method , 2010 .

[7]  V. E. Tarasov Fractional variations for dynamical systems: Hamilton and Lagrange approaches , 2006, math-ph/0606048.

[8]  Frederick E. Riewe,et al.  Mechanics with fractional derivatives , 1997 .

[9]  Om P. Agrawal,et al.  Fractional variational calculus and the transversality conditions , 2006 .

[10]  Fajun Yu,et al.  A generalized fractional KN equation hierarchy and its fractional Hamiltonian structure , 2011, Comput. Math. Appl..

[11]  Kiran M. Kolwankar,et al.  Hölder exponents of irregular signals and local fractional derivatives , 1997, chao-dyn/9711010.

[12]  Vasily E Tarasov Fractional systems and fractional Bogoliubov hierarchy equations. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Yufeng Zhang,et al.  A direct method for integrable couplings of TD hierarchy , 2002 .

[14]  Jacky Cresson,et al.  About Non-differentiable Functions , 2001 .

[15]  Guy Jumarie,et al.  Lagrangian mechanics of fractional order, Hamilton–Jacobi fractional PDE and Taylor’s series of nondifferentiable functions , 2007 .

[16]  R. El-Nabulsi MODIFICATIONS AT LARGE DISTANCES FROM FRACTIONAL AND FRACTAL ARGUMENTS , 2010 .

[17]  Agnieszka B. Malinowska,et al.  Composition Functionals in Fractional Calculus of Variations , 2010, 1009.2671.

[18]  George M. Zaslavsky Hamiltonian Chaos and Fractional Dynamics , 2005 .

[19]  V. E. Tarasov,et al.  Fractional Fokker-Planck equation for fractal media. , 2005, Chaos.

[20]  Wenxiu Ma,et al.  Hamiltonian and quasi-Hamiltonian structures associated with semi-direct sums of Lie algebras , 2006 .

[21]  G. Jumarie,et al.  Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results , 2006, Comput. Math. Appl..

[22]  W. Chen Time-space fabric underlying anomalous diffusion , 2005, math-ph/0505023.

[23]  Vasily E. Tarasov Fractional Liouville and BBGKI Equations , 2005 .

[24]  Weihua Deng,et al.  Remarks on fractional derivatives , 2007, Appl. Math. Comput..

[25]  Kiran M. Kolwankar,et al.  Fractional differentiability of nowhere differentiable functions and dimensions. , 1996, Chaos.

[26]  Riewe,et al.  Nonconservative Lagrangian and Hamiltonian mechanics. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[27]  Gui‐zhang Tu,et al.  The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems , 1989 .

[28]  Hui Wang,et al.  The fractional supertrace identity and its application to the super Jaulent-Miodek hierarchy , 2013, Commun. Nonlinear Sci. Numer. Simul..

[29]  G. Zaslavsky,et al.  Fractional Ginzburg–Landau equation for fractal media , 2005, physics/0511144.

[30]  R. Nigmatullin The Realization of the Generalized Transfer Equation in a Medium with Fractal Geometry , 1986, January 1.

[31]  A. D. Gangal,et al.  Calculus on fractal subsets of real line - I: formulation , 2003 .

[32]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[33]  Shangbo Zhou,et al.  Chaotic synchronization of a fractional-order system based on washout filter control , 2011 .

[34]  Kewei Zhang,et al.  On the local fractional derivative , 2010 .

[35]  Guy Jumarie,et al.  Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for non-differentiable functions , 2009, Appl. Math. Lett..

[36]  O. Agrawal,et al.  Fractional hamilton formalism within caputo’s derivative , 2006, math-ph/0612025.

[37]  Jacky Cresson Non-differentiable variational principles , 2005 .

[38]  T. Xia,et al.  The fractional supertrace identity and its application to the super Ablowitz-Kaup-Newell-Segur hierarchy , 2013 .

[39]  Wang Qiao,et al.  Comparison between two different sliding mode controllers for a fractional-order unified chaotic system , 2011 .

[40]  Jacky Cresson Scale calculus and the Schrödinger equation , 2003 .

[41]  R A El Nabulsi,et al.  A FRACTIONAL ACTION-LIKE VARIATIONAL APPROACH OF SOME CLASSICAL, QUANTUM AND GEOMETRICAL DYNAMICS , 2005 .

[42]  M. Naber,et al.  Fractional differential forms , 2001, math-ph/0301013.

[43]  Sheng Zhang,et al.  A generalized Tu formula and Hamiltonian structures of fractional AKNS hierarchy , 2010, 1011.2568.

[44]  Delfim F. M. Torres,et al.  Fractional conservation laws in optimal control theory , 2007, 0711.0609.

[45]  HongGuang Sun,et al.  MULTISCALE STATISTICAL MODEL OF FULLY-DEVELOPED TURBULENCE PARTICLE ACCELERATIONS , 2009 .

[46]  G. Wu,et al.  A Fractional Lie Group Method For Anomalous Diffusion Equations , 2010, 1007.2488.

[47]  J. Klafter,et al.  The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics , 2004 .

[48]  Om P. Agrawal,et al.  Fractional variational calculus in terms of Riesz fractional derivatives , 2007 .

[49]  程荣军,et al.  Element-free Galerkin (EFG) method for analysis of the time-fractional partial differential equations , 2012 .

[50]  Delfim F. M. Torres,et al.  Fractional actionlike variational problems , 2008, 0804.4500.

[51]  Wen-Xiu Ma,et al.  Semidirect sums of Lie algebras and discrete integrable couplings , 2006 .

[52]  I. Podlubny Fractional differential equations , 1998 .

[53]  Agnieszka B. Malinowska,et al.  A fractional calculus of variations for multiple integrals with application to vibrating string , 2010, 1001.2722.