Innovative membrane reformer for hydrogen production applied to PEM micro-cogeneration: simulation model and thermodynamic analysis

[1]  Stefano Campanari,et al.  Performance Assessment of Turbocharged Pem Fuel Cell Systems for Civil Aircraft Onboard Power Production , 2008 .

[2]  Paolo Iora,et al.  Thermodynamic Analysis of Integrated Molten Carbon Fuel Cell–Gas Turbine Cycles for Sub-MW and Multi-MW Scale Power Generation , 2007 .

[3]  Gustavo Capannelli,et al.  Steam Reforming of Methane in a Membrane Reactor: An Industrial Case Study , 2006 .

[4]  J.-S. Lai,et al.  A high-performance V6 converter for fuel cell power conditioning system , 2005, 2005 IEEE Vehicle Power and Propulsion Conference.

[5]  Robert H. Williams,et al.  Co-production of hydrogen, electricity and CO2 from coal with commercially ready technology. Part A: Performance and emissions , 2005 .

[6]  M. Harold,et al.  Comparison of methanol-based fuel processors for PEM fuel cell systems , 2005 .

[7]  Olav Bolland,et al.  High-temperature membranes in power generation with CO2 capture , 2004 .

[8]  Lin Wang,et al.  Performance studies of PEM fuel cells with interdigitated flow fields , 2004 .

[9]  S. Tosti,et al.  Diffusion bonding of pd-ag rolled membranes , 2004 .

[10]  Fausto Gallucci,et al.  A simulation study of the steam reforming of methane in a dense tubular membrane reactor , 2004 .

[11]  Michael P. Harold,et al.  Comparison of conventional and membrane reactor fuel processors for hydrocarbon-based PEM fuel cell systems , 2004 .

[12]  S. Tosti Supported and laminated Pd-based metallic membranes , 2003 .

[13]  Lin Wang,et al.  A parametric study of PEM fuel cell performances , 2003 .

[14]  D. W. Goodman,et al.  CO-free fuel processing for fuel cell applications , 2002 .

[15]  A. M. Tuckey,et al.  A low-cost inverter for domestic fuel cell applications , 2002, 2002 IEEE 33rd Annual IEEE Power Electronics Specialists Conference. Proceedings (Cat. No.02CH37289).

[16]  A. Ghenciu,et al.  Review of fuel processing catalysts for hydrogen production in PEM fuel cell systems , 2002 .

[17]  Francesca Sarto,et al.  Sputtered, electroless, and rolled palladium–ceramic membranes , 2002 .

[18]  S. Tosti,et al.  Rolled thin Pd and Pd–Ag membranes for hydrogen separation and production , 2000 .

[19]  Ennio Macchi,et al.  Thermodynamic analysis of advanced power cycles based upon solid oxide fuel cells, gas turbines and rankine bottoming cycles , 1998 .

[20]  Ennio Macchi,et al.  An assessment of the thermodynamic performance of mixed gas-steam cycles. Part A: Intercooled and steam-injected cycles , 1995 .

[21]  Ennio Macchi,et al.  IGTC-72 Gas-Turbine-Based Advanced Cycles For Power Generation : Part B: Performance Analysis of Selected Configurations(Session D-2 ADVANCED CYCLE) , 1991 .

[22]  Bernard P. A. Grandjean,et al.  Catalytic palladium‐based membrane reactors: A review , 1991 .

[23]  G. Manzolini,et al.  Technical Economic Evaluation of a System for Electricity Production With CO 2 Capture Using a Membrane Reformer With , 2006 .

[24]  Ennio Macchi,et al.  Technical Economic Evaluation of a System for Electricity Production With CO2 Capture Using a Membrane Reformer With Permeate Side Combustion , 2006 .

[25]  James Larminie,et al.  Fuel Cell Systems Explained , 2000 .