Semi-Smooth Newton Methods for Optimal Control of the Dynamical Lamé System with Control Constraints

Optimal control problems governed by the dynamical Lamé system with additional constraints on the controls are analyzed. Different types of control action are considered: distributed, Neumann boundary and Dirichlet boundary control. To treat the inequality control constraints semi-smooth Newton methods are applied and their convergence is analyzed. Although semi-smooth Newton methods are widely studied in the context of PDE-constrained optimization little has been done in the context of the dynamical Lamé system. The novelty of the article is the proof that in case of distributed and Neumann boundary control the Newton method converges superlinearly. In case of Dirichlet control superlinear convergence is shown for a strongly damped Lamé system. The results are an extension of [14], where optimal control problems of the classical wave equation are considered. The control problems are discretized by finite elements and numerical examples are presented.

[1]  Albert Y. Zomaya,et al.  Partial Differential Equations , 2007, Explorations in Numerical Analysis.

[2]  Karl Kunisch,et al.  On Time Optimal Control of the Wave Equation and Its Numerical Realization as Parametric Optimization Problem , 2013, SIAM J. Control. Optim..

[3]  A. Kröner Adaptive finite element methods for optimal control ofelastic waves , 2012 .

[4]  Michael Ulbrich,et al.  Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces , 2011, MOS-SIAM Series on Optimization.

[5]  K. Kunisch,et al.  Semismooth Newton Methods for Optimal Control of the Wave Equation with Control Constraints , 2011, SIAM J. Control. Optim..

[6]  Martin Gugat,et al.  Optimal distributed control of the wave equation subject to state constraints , 2009 .

[7]  Karl Kunisch,et al.  Constrained Dirichlet Boundary Control in L2 for a Class of Evolution Equations , 2007, SIAM J. Control. Optim..

[8]  Enrique Zuazua,et al.  Propagation, Observation, and Control of Waves Approximated by Finite Difference Methods , 2005, SIAM Rev..

[9]  Michael Ulbrich,et al.  Constrained optimal control of Navier-Stokes flow by semismooth Newton methods , 2003, Syst. Control. Lett..

[10]  Kazufumi Ito,et al.  The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..

[11]  Michael Ulbrich,et al.  Semismooth Newton Methods for Operator Equations in Function Spaces , 2002, SIAM J. Optim..

[12]  Xiaojun Chen,et al.  Smoothing Methods and Semismooth Methods for Nondifferentiable Operator Equations , 2000, SIAM J. Numer. Anal..

[13]  S. C. Brenner,et al.  Linear finite element methods for planar linear elasticity , 1992 .

[14]  Hans Triebel,et al.  Spaces of Besov-Hardy-Sobolev type on complete Riemannian manifolds , 1985 .

[15]  P. Massatt Limiting behavior for strongly damped nonlinear wave equations , 1983 .

[16]  D. Russell Controllability and Stabilizability Theory for Linear Partial Differential Equations: Recent Progress and Open Questions , 1978 .

[17]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[18]  J. Lions Optimal Control of Systems Governed by Partial Differential Equations , 1971 .

[19]  Enrique Zuazua,et al.  The Wave Equation: Control and Numerics , 2012 .

[20]  Axel Kröner,et al.  Adaptive Finite Element Methods For Optimal Control Of Second Order Hyperbolic Equations , 2011, Comput. Methods Appl. Math..

[21]  Karl Kunisch,et al.  Time optimal control of the wave equation , its regularization and numerical realization , 2011 .

[22]  A. Kröner Numerical Methods for Control of Second Order Hyperbolic Equations , 2011 .

[23]  Ivan P. Gavrilyuk,et al.  Lagrange multiplier approach to variational problems and applications , 2010, Math. Comput..

[24]  I. Lasiecka,et al.  The dynamical Lame system: regularity of solutions, boundary controllability and boundary data continuation , 2002 .

[25]  J. Lions,et al.  Non homogeneous boundary value problems for second order hyperbolic operators , 1986 .

[26]  H. Triebel Theory Of Function Spaces , 1983 .

[27]  A. Kufner,et al.  Triebel, H., Interpolation Theory, Function Spaces, Differential Operators. Berlin, VEB Deutscher Verlag der Wissenschaften 1978. 528 S., M 87,50 , 1979 .

[28]  H. Beckert,et al.  J. L. Lions and E. Magenes, Non‐Homogeneous Boundary Value Problems and Applications, II. (Die Grundlehren d. Math. Wissenschaften, Bd. 182). XI + 242 S. Berlin/Heidelberg/New York 1972. Springer‐Verlag. Preis geb. DM 58,— , 1973 .

[29]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .