Semi-Smooth Newton Methods for Optimal Control of the Dynamical Lamé System with Control Constraints
暂无分享,去创建一个
[1] Albert Y. Zomaya,et al. Partial Differential Equations , 2007, Explorations in Numerical Analysis.
[2] Karl Kunisch,et al. On Time Optimal Control of the Wave Equation and Its Numerical Realization as Parametric Optimization Problem , 2013, SIAM J. Control. Optim..
[3] A. Kröner. Adaptive finite element methods for optimal control ofelastic waves , 2012 .
[4] Michael Ulbrich,et al. Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces , 2011, MOS-SIAM Series on Optimization.
[5] K. Kunisch,et al. Semismooth Newton Methods for Optimal Control of the Wave Equation with Control Constraints , 2011, SIAM J. Control. Optim..
[6] Martin Gugat,et al. Optimal distributed control of the wave equation subject to state constraints , 2009 .
[7] Karl Kunisch,et al. Constrained Dirichlet Boundary Control in L2 for a Class of Evolution Equations , 2007, SIAM J. Control. Optim..
[8] Enrique Zuazua,et al. Propagation, Observation, and Control of Waves Approximated by Finite Difference Methods , 2005, SIAM Rev..
[9] Michael Ulbrich,et al. Constrained optimal control of Navier-Stokes flow by semismooth Newton methods , 2003, Syst. Control. Lett..
[10] Kazufumi Ito,et al. The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..
[11] Michael Ulbrich,et al. Semismooth Newton Methods for Operator Equations in Function Spaces , 2002, SIAM J. Optim..
[12] Xiaojun Chen,et al. Smoothing Methods and Semismooth Methods for Nondifferentiable Operator Equations , 2000, SIAM J. Numer. Anal..
[13] S. C. Brenner,et al. Linear finite element methods for planar linear elasticity , 1992 .
[14] Hans Triebel,et al. Spaces of Besov-Hardy-Sobolev type on complete Riemannian manifolds , 1985 .
[15] P. Massatt. Limiting behavior for strongly damped nonlinear wave equations , 1983 .
[16] D. Russell. Controllability and Stabilizability Theory for Linear Partial Differential Equations: Recent Progress and Open Questions , 1978 .
[17] H. Triebel. Interpolation Theory, Function Spaces, Differential Operators , 1978 .
[18] J. Lions. Optimal Control of Systems Governed by Partial Differential Equations , 1971 .
[19] Enrique Zuazua,et al. The Wave Equation: Control and Numerics , 2012 .
[20] Axel Kröner,et al. Adaptive Finite Element Methods For Optimal Control Of Second Order Hyperbolic Equations , 2011, Comput. Methods Appl. Math..
[21] Karl Kunisch,et al. Time optimal control of the wave equation , its regularization and numerical realization , 2011 .
[22] A. Kröner. Numerical Methods for Control of Second Order Hyperbolic Equations , 2011 .
[23] Ivan P. Gavrilyuk,et al. Lagrange multiplier approach to variational problems and applications , 2010, Math. Comput..
[24] I. Lasiecka,et al. The dynamical Lame system: regularity of solutions, boundary controllability and boundary data continuation , 2002 .
[25] J. Lions,et al. Non homogeneous boundary value problems for second order hyperbolic operators , 1986 .
[26] H. Triebel. Theory Of Function Spaces , 1983 .
[27] A. Kufner,et al. Triebel, H., Interpolation Theory, Function Spaces, Differential Operators. Berlin, VEB Deutscher Verlag der Wissenschaften 1978. 528 S., M 87,50 , 1979 .
[28] H. Beckert,et al. J. L. Lions and E. Magenes, Non‐Homogeneous Boundary Value Problems and Applications, II. (Die Grundlehren d. Math. Wissenschaften, Bd. 182). XI + 242 S. Berlin/Heidelberg/New York 1972. Springer‐Verlag. Preis geb. DM 58,— , 1973 .
[29] J. Lions,et al. Non-homogeneous boundary value problems and applications , 1972 .