Network degeneration and dysfunction in presymptomatic C9ORF72 expansion carriers

[1]  D. Geschwind,et al.  Timing and significance of pathological features in C9orf72 expansion-associated frontotemporal dementia. , 2016, Brain : a journal of neurology.

[2]  wen ling ma,et al.  Behavioural Brain Research , 2016 .

[3]  D. Underhill,et al.  C9orf72 is required for proper macrophage and microglial function in mice , 2016, Science.

[4]  M. P. van den Heuvel,et al.  Brain morphologic changes in asymptomatic C9orf72 repeat expansion carriers , 2015, Neurology.

[5]  Jiayu Chen,et al.  Patterns of Gray Matter Abnormalities in Schizophrenia Based on an International Mega-analysis. , 2015, Schizophrenia bulletin.

[6]  Veronica Redaelli,et al.  Presymptomatic cognitive and neuroanatomical changes in genetic frontotemporal dementia in the Genetic Frontotemporal dementia Initiative (GENFI) study: a cross-sectional analysis , 2015, The Lancet Neurology.

[7]  E. Benarroch Pulvinar , 2015, Neurology.

[8]  Nick C Fox,et al.  Longitudinal Diffusion Tensor Imaging in Frontotemporal Dementia , 2014, Annals of neurology.

[9]  Giovanni Coppola,et al.  Altered network connectivity in frontotemporal dementia with C9orf72 hexanucleotide repeat expansion. , 2014, Brain : a journal of neurology.

[10]  Quan Le Van Neurophysiological study for pulvinar role in rapid detection of snakes in monkeys , 2014 .

[11]  Patrizia Rizzu,et al.  Structural and functional brain connectivity in presymptomatic familial frontotemporal dementia , 2013, Neurology.

[12]  L. Wilkins C9orf72 expansions are the most common genetic cause of Huntington disease phenocopies , 2014, Neurology.

[13]  Allan R. Jones,et al.  Transcriptional Landscape of the Prenatal Human Brain , 2014, Nature.

[14]  P. McColgan,et al.  C9orf72 expansions are the most common genetic cause of Huntington disease phenocopies , 2014, Neurology.

[15]  I. Mackenzie,et al.  Early dipeptide repeat pathology in a frontotemporal dementia kindred with C9ORF72 mutation and intellectual disability , 2014, Acta Neuropathologica.

[16]  Xue Hua,et al.  Brain differences in infants at differential genetic risk for late-onset Alzheimer disease: a cross-sectional imaging study. , 2014, JAMA neurology.

[17]  A. Chiò,et al.  The metabolic signature of C9ORF72-related ALS: FDG PET comparison with nonmutated patients , 2014, European Journal of Nuclear Medicine and Molecular Imaging.

[18]  Jumpei Matsumoto,et al.  Pulvinar neurons reveal neurobiological evidence of past selection for rapid detection of snakes , 2013, Proceedings of the National Academy of Sciences.

[19]  A. Bokde,et al.  Multiparametric MRI study of ALS stratified for the C9orf72 genotype , 2013, Neurology.

[20]  Cheryl L. Grady,et al.  Abnormal network connectivity in frontotemporal dementia: Evidence for prefrontal isolation , 2013, Cortex.

[21]  Jonathan M. Bekisz,et al.  Cognitive decline and reduced survival in C9orf72 expansion frontotemporal degeneration and amyotrophic lateral sclerosis , 2012, Journal of Neurology, Neurosurgery & Psychiatry.

[22]  D. Geschwind,et al.  Frontotemporal dementia due to C9ORF72 mutations , 2012, Neurology.

[23]  Janel O. Johnson,et al.  Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study , 2012, The Lancet Neurology.

[24]  A. Al-Chalabi,et al.  Cognitive and clinical characteristics of patients with amyotrophic lateral sclerosis carrying a C9orf72 repeat expansion: a population-based cohort study , 2012, The Lancet Neurology.

[25]  D. Neary,et al.  Distinct clinical and pathological characteristics of frontotemporal dementia associated with C9ORF72 mutations. , 2012, Brain : a journal of neurology.

[26]  Y. Pijnenburg,et al.  The clinical and pathological phenotype of C9ORF72 hexanucleotide repeat expansions. , 2012, Brain : a journal of neurology.

[27]  C. Jack,et al.  Neuroimaging signatures of frontotemporal dementia genetics: C9ORF72, tau, progranulin and sporadics , 2012, Brain : a journal of neurology.

[28]  David T. Jones,et al.  Characterization of frontotemporal dementia and/or amyotrophic lateral sclerosis associated with the GGGGCC repeat expansion in C9ORF72 , 2012, Brain : a journal of neurology.

[29]  Nick C Fox,et al.  Frontotemporal dementia with the C9ORF72 hexanucleotide repeat expansion: clinical, neuroanatomical and neuropathological features , 2012, Alzheimer's & Dementia.

[30]  Mert R. Sabuncu,et al.  The influence of head motion on intrinsic functional connectivity MRI , 2012, NeuroImage.

[31]  Bruce L. Miller,et al.  Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS , 2011, Neuron.

[32]  David Heckerman,et al.  A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD , 2011, Neuron.

[33]  David T. Jones,et al.  Altered functional connectivity in asymptomatic MAPT subjects , 2011, Neurology.

[34]  Henrik Nielsen,et al.  The transcriptional landscape. , 2011, Methods in molecular biology.

[35]  Hisao Nishijo,et al.  The monkey pulvinar neurons differentially respond to emotional expressions of human faces , 2010, Behavioural Brain Research.

[36]  Efstathios D. Gennatas,et al.  Network-level structural covariance in the developing brain , 2010, Proceedings of the National Academy of Sciences.

[37]  Alex Fornito,et al.  Voxelwise Meta-Analysis of Gray Matter Abnormalities in Bipolar Disorder , 2010, Biological Psychiatry.

[38]  Efstathios D. Gennatas,et al.  Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer's disease. , 2010, Brain : a journal of neurology.

[39]  Jean-Luc Anton,et al.  Region of interest analysis using an SPM toolbox , 2010 .

[40]  Michael D. Greicius,et al.  Distinct Cerebellar Contributions to Intrinsic Connectivity Networks , 2009, NeuroImage.

[41]  B. Miller,et al.  Neurodegenerative Diseases Target Large-Scale Human Brain Networks , 2009, Neuron.

[42]  Nathaniel Mercaldo,et al.  Development of methodology for conducting clinical trials in frontotemporal lobar degeneration. , 2008, Brain : a journal of neurology.

[43]  Maria Luisa Gorno-Tempini,et al.  Frontal paralimbic network atrophy in very mild behavioral variant frontotemporal dementia. , 2008, Archives of neurology.

[44]  G. Glover,et al.  Dissociable Intrinsic Connectivity Networks for Salience Processing and Executive Control , 2007, The Journal of Neuroscience.

[45]  Ramon Casanova,et al.  Biological parametric mapping: A statistical toolbox for multimodality brain image analysis , 2007, NeuroImage.

[46]  Daniel Rueckert,et al.  Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data , 2006, NeuroImage.

[47]  Stephen M. Smith,et al.  Investigations into resting-state connectivity using independent component analysis , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[48]  C. Derouesné [Mini-mental state examination]. , 2001, Revue neurologique.

[49]  C. Jack,et al.  Medial temporal atrophy on MRI in normal aging and very mild Alzheimer's disease , 1997, Neurology.

[50]  P S Goldman-Rakic,et al.  Topographic organization of medial pulvinar connections with the prefrontal cortex in the rhesus monkey , 1997, The Journal of comparative neurology.

[51]  Karl J. Friston,et al.  Combining Spatial Extent and Peak Intensity to Test for Activations in Functional Imaging , 1997, NeuroImage.

[52]  P. Basser,et al.  Toward a quantitative assessment of diffusion anisotropy , 1996, Magnetic resonance in medicine.

[53]  M. Mega,et al.  The Neuropsychiatric Inventory , 1994, Neurology.

[54]  R. Kessler,et al.  Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States. Results from the National Comorbidity Survey. , 1994, Archives of general psychiatry.

[55]  N. Tzourio,et al.  Functional Mapping of the Human Brain , 1993 .

[56]  M M Mesulam,et al.  Thalamic connections of the insula in the rhesus monkey and comments on the paralimbic connectivity of the medial pulvinar nucleus , 1984, The Journal of comparative neurology.

[57]  M. Folstein,et al.  The Mini-Mental State Examination. , 1983, Archives of general psychiatry.

[58]  Mark H. Davis Measuring individual differences in empathy: Evidence for a multidimensional approach. , 1983 .

[59]  Alan C. Evans,et al.  NeuroImage: Clinical , 2022 .