Solar cell efficiency tables (version 43)

Consolidated tables showing an extensive listing of the highest independently confirmed efficiencies for solar cells and modules are presented. Guidelines for inclusion of results into these tables are outlined, and new entries since July 2013 are reviewed. Copyright © 2013 John Wiley & Sons, Ltd.

[1]  C. J. Keavney,et al.  Emitter structures in MOCVD InP solar cells , 1990, IEEE Conference on Photovoltaic Specialists.

[2]  Martin A. Green,et al.  Large area, concentrator buried contact solar cells , 1995 .

[3]  H. Field,et al.  18.2% (AM1.5) efficient GaAs solar cell on optical-grade polycrystalline Ge substrate , 1996, Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996.

[4]  M. Green,et al.  20 000 PERL silicon cells for the ‘1996 World Solar Challenge’ solar car race , 1997 .

[5]  M. Green,et al.  19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells , 1998 .

[6]  K. Emery,et al.  Proposed reference irradiance spectra for solar energy systems testing , 2002 .

[7]  Rommel Noufi,et al.  A 21.5% efficient Cu(In,Ga)Se2 thin‐film concentrator solar cell , 2002 .

[8]  Paul A. Basore,et al.  Pilot production of thin-film crystalline silicon on glass modules , 2002, Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 2002..

[9]  Kenji Yamamoto,et al.  High efficiency thin film silicon hybrid solar cell module on 1 m/sup 2/-class large area substrate , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.

[10]  S. Glunz,et al.  SHORT COMMUNICATION: ACCELERATED PUBLICATION: Multicrystalline silicon solar cells exceeding 20% efficiency , 2004 .

[11]  I. Sakata,et al.  Japan's New National R&D Program for Photovoltaics , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[12]  I. Repins,et al.  19·9%‐efficient ZnO/CdS/CuInGaSe2 solar cell with 81·2% fill factor , 2008 .

[13]  Ewan D. Dunlop,et al.  A luminescent solar concentrator with 7.1% power conversion efficiency , 2008 .

[14]  Johannes Meier,et al.  High-Efficiency Amorphous Silicon Devices on LPCVD-ZnO TCO Prepared in Industrial KAI TM-M R&D Reactor , 2009 .

[15]  W. Warta,et al.  Solar cell efficiency tables (version 33) , 2009 .

[16]  Peter Lund,et al.  Review of stability for advanced dye solar cells , 2010 .

[17]  David D. Smith,et al.  Generation 3: Improved performance at lower cost , 2010, 2010 35th IEEE Photovoltaic Specialists Conference.

[18]  Peter Engelhart,et al.  R&D pilot line production of multi-crystalline Si solar cells exceeding cell efficiencies of 18% , 2011 .

[19]  R. Service,et al.  Solar energy. Outlook brightens for plastic solar cells. , 2011, Science.

[20]  Isik C. Kizilyalli,et al.  27.6% Conversion efficiency, a new record for single-junction solar cells under 1 sun illumination , 2011, 2011 37th IEEE Photovoltaic Specialists Conference.

[21]  R. J. Schwartz,et al.  Compact spectrum splitting photovoltaic module with high efficiency , 2011 .

[22]  D. Hariskos,et al.  New world record efficiency for Cu(In,Ga)Se2 thin‐film solar cells beyond 20% , 2011 .

[23]  M. Taguchi,et al.  The Approaches for High Efficiency HITTM Solar Cell with Very Thin (<100 µm) Silicon Wafer over 23% , 2011 .

[24]  Martin A. Green,et al.  Solar cell efficiency tables (version 39) , 2012 .

[25]  Linlin Yang,et al.  New module efficiency record: 23.5% under 1-sun illumination using thin-film single-junction GaAs solar cells , 2012, 2012 38th IEEE Photovoltaic Specialists Conference.

[26]  Frederik C. Krebs,et al.  Stability and Degradation of Organic and Polymer Solar Cells: Krebs/Stability and Degradation of Organic and Polymer Solar Cells , 2012 .

[27]  Martin A. Green,et al.  Solar cell efficiency tables , 1993 .

[28]  Lars Stolt,et al.  World‐record Cu(In,Ga)Se2‐based thin‐film sub‐module with 17.4% efficiency , 2012 .

[29]  Suren A. Gevorgyan,et al.  The ISOS-3 inter-laboratory collaboration focused on the stability of a variety of organic photovoltaic devices , 2012 .

[30]  Suren A. Gevorgyan,et al.  Stability of Polymer Solar Cells , 2012, Advanced materials.

[31]  M. Topič,et al.  Ageing of DSSC studied by electroluminescence and transmission imaging , 2013 .

[32]  Yoshiyuki Chiba,et al.  Achievement of 19.7% efficiency with a small-sized Cu(InGa)(SeS)2 solar cells prepared by sulfurization after selenizaion process with Zn-based buffer , 2013, 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC).

[33]  Myles A. Steiner,et al.  Enhanced external radiative efficiency for 20.8 efficient single-junction GaInP solar cells , 2013 .

[34]  Wilhelm Warta,et al.  Solar cell efficiency tables (version 42) , 2013 .

[35]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[36]  M. Kondo,et al.  Relationship between the cell thickness and the optimum period of textured back reflectors in thin-film microcrystalline silicon solar cells , 2013 .

[37]  D. C. Law,et al.  Direct Semiconductor Bonded 5J Cell for Space and Terrestrial Applications , 2014, IEEE Journal of Photovoltaics.

[38]  Wei Wang,et al.  Optical designs that improve the efficiency of Cu2ZnSn(S,Se)4 solar cells , 2014 .

[39]  W. Warta,et al.  Solar cell efficiency tables (Version 45) , 2015 .