Practical and Efficient Circle Graph Recognition

Circle graphs are the intersection graphs of chords in a circle. This paper presents the first sub-quadratic recognition algorithm for the class of circle graphs. Our algorithm is O(n+m) times the inverse Ackermann function, α(n+m), whose value is smaller than 4 for any practical graph. The algorithm is based on a new incremental Lexicographic Breadth-First Search characterization of circle graphs, and a new efficient data-structure for circle graphs, both developed in the paper. The algorithm is an extension of a Split Decomposition algorithm with the same running time developed by the authors in a companion paper.

[1]  R. Möhring Algorithmic graph theory and perfect graphs , 1986 .

[2]  Sang-il Oum,et al.  Rank-width and vertex-minors , 2005, J. Comb. Theory, Ser. B.

[3]  Xin-She Yang,et al.  Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.

[4]  Brijesh Dongol,et al.  Extending the theory of Owicki and Gries with a logic of progress , 2005, Log. Methods Comput. Sci..

[5]  Emeric Gioan,et al.  Practical and Efficient Split Decomposition via Graph-Labelled Trees , 2011, Algorithmica.

[6]  Laurent Viennot,et al.  Lex-BFS and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing , 2000, Theor. Comput. Sci..

[7]  André Bouchet,et al.  Graphic presentations of isotropic systems , 1987, J. Comb. Theory, Ser. B.

[8]  Bruno Courcelle,et al.  Circle graphs and monadic second-order logic , 2008, J. Appl. Log..

[9]  Walid Naji,et al.  Reconnaissance des graphes de cordes , 1985, Discret. Math..

[10]  Robert E. Tarjan,et al.  Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..

[11]  James F. Geelen,et al.  Circle graph obstructions under pivoting , 2009, J. Graph Theory.

[12]  A. Itai,et al.  QUEUES, STACKS AND GRAPHS , 1971 .

[13]  Elias Dahlhaus,et al.  Parallel Algorithms for Hierarchical Clustering and Applications to Split Decomposition and Parity Graph Recognition , 2000, J. Algorithms.

[14]  Bruno Courcelle,et al.  The monadic second-order logic of graphs XVI : Canonical graph decompositions , 2005, Log. Methods Comput. Sci..

[15]  Derek G. Corneil,et al.  Lexicographic Breadth First Search - A Survey , 2004, WG.

[16]  André Bouchet,et al.  Reducing prime graphs and recognizing circle graphs , 1987, Comb..

[17]  Robert E. Tarjan,et al.  Efficiency of a Good But Not Linear Set Union Algorithm , 1972, JACM.

[18]  W. Cunningham Decomposition of Directed Graphs , 1982 .

[19]  Wen-Lian Hsu,et al.  Recognizing circle graphs in polynomial time , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[20]  Clifford Stein,et al.  Introduction to Algorithms, 2nd edition. , 2001 .

[21]  M. Golummc Algorithmic graph theory and perfect graphs , 1980 .

[22]  Jeremy P. Spinrad,et al.  Recognition of Circle Graphs , 1994, J. Algorithms.

[23]  Emeric Gioan,et al.  Dynamic Distance Hereditary Graphs Using Split Decomposition , 2007, ISAAC.

[24]  Emeric Gioan,et al.  Split decomposition and graph-labelled trees: characterizations and fully-dynamic algorithms for totally decomposable graphs , 2008, Discret. Appl. Math..

[25]  M. Golumbic Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, Vol 57) , 2004 .

[26]  Sang-il Oum,et al.  Excluding a bipartite circle graph from line graphs , 2009, J. Graph Theory.

[27]  Feodor F. Dragan,et al.  LexBFS-Orderings and Power of Graphs , 1996, WG.