Deep sequencing reveals as-yet-undiscovered small RNAs in Escherichia coli

BackgroundIn Escherichia coli, approximately 100 regulatory small RNAs (sRNAs) have been identified experimentally and many more have been predicted by various methods. To provide a comprehensive overview of sRNAs, we analysed the low-molecular-weight RNAs (< 200 nt) of E. coli with deep sequencing, because the regulatory RNAs in bacteria are usually 50-200 nt in length.ResultsWe discovered 229 novel candidate sRNAs (≥ 50 nt) with computational or experimental evidence of transcription initiation. Among them, the expression of seven intergenic sRNAs and three cis-antisense sRNAs was detected by northern blot analysis. Interestingly, five novel sRNAs are expressed from prophage regions and we note that these sRNAs have several specific characteristics. Furthermore, we conducted an evolutionary conservation analysis of the candidate sRNAs and summarised the data among closely related bacterial strains.ConclusionsThis comprehensive screen for E. coli sRNAs using a deep sequencing approach has shown that many as-yet-undiscovered sRNAs are potentially encoded in the E. coli genome. We constructed the Escherichia coli Small RNA Browser (ECSBrowser; http://rna.iab.keio.ac.jp/), which integrates the data for previously identified sRNAs and the novel sRNAs found in this study.

[1]  Robert Entriken,et al.  Escherichia coli promoter sequences predict in vitro RNA polymerase selectivity , 1984, Nucleic Acids Res..

[2]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[3]  G. Storz,et al.  Regulatory RNAs in Bacteria , 2009, Cell.

[4]  B. Wanner,et al.  One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[5]  T. D. Schneider,et al.  Small membrane proteins found by comparative genomics and ribosome binding site models , 2008, Molecular microbiology.

[6]  G. Storz,et al.  GadY, a Small-RNA Regulator of Acid Response Genes in Escherichia coli , 2004, Journal of bacteriology.

[7]  H. Margalit,et al.  Novel small RNA-encoding genes in the intergenic regions of Escherichia coli , 2001, Current Biology.

[8]  M. Tomita,et al.  Prediction of non-coding and antisense RNA genes in Escherichia coli with Gapped Markov Model. , 2006, Gene.

[9]  N. Thomson,et al.  Studying bacterial transcriptomes using RNA-seq , 2010, Current opinion in microbiology.

[10]  H. Ackermann,et al.  Guidelines for bacteriophage characterization. , 1978, Advances in virus research.

[11]  M. Palumbo,et al.  Widespread Antisense Transcription in Escherichia coli , 2010, mBio.

[12]  Alok J. Saldanha,et al.  Java Treeview - extensible visualization of microarray data , 2004, Bioinform..

[13]  H. Aiba,et al.  Small RNAs making a small protein , 2007, Proceedings of the National Academy of Sciences.

[14]  S Miyano,et al.  Open source clustering software. , 2004, Bioinformatics.

[15]  Julio Collado-Vides,et al.  RegulonDB version 7.0: transcriptional regulation of Escherichia coli K-12 integrated within genetic sensory response units (Gensor Units) , 2010, Nucleic Acids Res..

[16]  H. Ochman,et al.  Genome-wide detection of novel regulatory RNAs in E. coli. , 2011, Genome research.

[17]  M. Waldor,et al.  Phage regulatory circuits and virulence gene expression. , 2005, Current opinion in microbiology.

[18]  Peer Bork,et al.  Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation , 2007, Bioinform..

[19]  J. Mcneil,et al.  Prediction of rho-independent transcriptional terminators in Escherichia coli. , 2001, Nucleic acids research.

[20]  K. Gerdes,et al.  Multiple hok genes on the chromosome of Escherichia coli , 1999, Molecular microbiology.

[21]  Samuel A. Assefa,et al.  A Strand-Specific RNA–Seq Analysis of the Transcriptome of the Typhoid Bacillus Salmonella Typhi , 2009, PLoS genetics.

[22]  K. Wassarman Small RNAs in Bacteria Diverse Regulators of Gene Expression in Response to Environmental Changes , 2002, Cell.

[23]  G. Storz,et al.  Repression of small toxic protein synthesis by the Sib and OhsC small RNAs , 2008, Molecular microbiology.

[24]  S. Gottesman The small RNA regulators of Escherichia coli: roles and mechanisms*. , 2004, Annual review of microbiology.

[25]  S. Gottesman,et al.  A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[26]  G. Storz,et al.  Identification of novel small RNAs using comparative genomics and microarrays. , 2001, Genes & development.

[27]  Kevin Karplus,et al.  A Flexible Motif Search Technique Based on Generalized Profiles , 1996, Comput. Chem..

[28]  J P Bouché,et al.  Genetic evidence that DicF, a second division inhibitor encoded by the Escherichia coli dicB operon, is probably RNA , 1989, Molecular microbiology.

[29]  H. Mori,et al.  Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection , 2006, Molecular systems biology.

[30]  Aixia Zhang,et al.  Small Stress Response Proteins in Escherichia coli: Proteins Missed by Classical Proteomic Studies , 2009, Journal of bacteriology.

[31]  E M Rubin,et al.  Mapping the Burkholderia cenocepacia niche response via high-throughput sequencing , 2009, Proceedings of the National Academy of Sciences.

[32]  Kristin Reiche,et al.  The primary transcriptome of the major human pathogen Helicobacter pylori , 2010, Nature.

[33]  E. Kolker,et al.  Transcriptome analysis of Escherichia coli using high-density oligonucleotide probe arrays. , 2002, Nucleic acids research.

[34]  M. Lawrence,et al.  Experimental discovery of sRNAs in Vibrio cholerae by direct cloning, 5S/tRNA depletion and parallel sequencing , 2009, Nucleic acids research.

[35]  W. J. Kent,et al.  BLAT--the BLAST-like alignment tool. , 2002, Genome research.

[36]  G. Storz,et al.  Regulating bacterial transcription with small RNAs. , 2006, Cold Spring Harbor symposia on quantitative biology.

[37]  Hirotada Mori,et al.  Molecular characterization of long direct repeat (LDR) sequences expressing a stable mRNA encoding for a 35‐amino‐acid cell‐killing peptide and a cis‐encoded small antisense RNA in Escherichia coli , 2002, Molecular microbiology.

[38]  S. Casjens,et al.  Prophages and bacterial genomics: what have we learned so far? , 2003, Molecular microbiology.

[39]  J. Vogel,et al.  RNomics in Escherichia coli detects new sRNA species and indicates parallel transcriptional output in bacteria. , 2003, Nucleic acids research.

[40]  A. Camilli,et al.  A broadening world of bacterial small RNAs. , 2010, Current opinion in microbiology.

[41]  Steven Salzberg,et al.  A probabilistic method for identifying start codons in bacterial genomes , 2001, Bioinform..

[42]  Julio Collado-Vides,et al.  RegulonDB (version 6.0): gene regulation model of Escherichia coli K-12 beyond transcription, active (experimental) annotated promoters and Textpresso navigation , 2007, Nucleic Acids Res..

[43]  G. Storz,et al.  Detection of 5′- and 3′-UTR-derived small RNAs and cis-encoded antisense RNAs in Escherichia coli , 2005, Nucleic acids research.

[44]  Hsien-Da Huang,et al.  sRNAMap: genomic maps for small non-coding RNAs, their regulators and their targets in microbial genomes , 2008, Nucleic Acids Res..

[45]  I-Min A. Dubchak,et al.  A computational approach to identify genes for functional RNAs in genomic sequences. , 2001, Nucleic acids research.

[46]  G. Storz,et al.  Global analysis of small RNA and mRNA targets of Hfq , 2003, Molecular microbiology.

[47]  J. Vogel,et al.  Deep Sequencing Analysis of Small Noncoding RNA and mRNA Targets of the Global Post-Transcriptional Regulator, Hfq , 2008, PLoS genetics.

[48]  H. Margalit,et al.  A survey of small RNA-encoding genes in Escherichia coli. , 2003, Nucleic acids research.

[49]  T. Rognes,et al.  Predicting non-coding RNA genes in Escherichia coli with boosted genetic programming , 2005, Nucleic acids research.

[50]  G. Storz,et al.  An antisense RNA controls synthesis of an SOS-induced toxin evolved from an antitoxin , 2007, Molecular microbiology.

[51]  S. Eddy,et al.  Computational identification of noncoding RNAs in E. coli by comparative genomics , 2001, Current Biology.

[52]  J. Bähler,et al.  Cellular and Molecular Life Sciences REVIEW RNA-seq: from technology to biology , 2022 .

[53]  R. Griffey,et al.  A bioinformatics based approach to discover small RNA genes in the Escherichia coli genome. , 2002, Bio Systems.

[54]  Ruiqiang Li,et al.  SOAP: short oligonucleotide alignment program , 2008, Bioinform..

[55]  Karsten Zengler,et al.  The transcription unit architecture of the Escherichia coli genome , 2009, Nature Biotechnology.

[56]  J. Vogel,et al.  Identification of regulatory RNAs in Bacillus subtilis , 2010, Nucleic acids research.

[57]  Brian D. Ondov,et al.  Structure and Complexity of a Bacterial Transcriptome , 2009, Journal of bacteriology.

[58]  C. K. Vanderpool,et al.  A dual function for a bacterial small RNA: SgrS performs base pairing-dependent regulation and encodes a functional polypeptide , 2007, Proceedings of the National Academy of Sciences.

[59]  D. Ecker,et al.  RNAMotif, an RNA secondary structure definition and search algorithm. , 2001, Nucleic acids research.

[60]  S. Gottesman,et al.  Involvement of a novel transcriptional activator and small RNA in post‐transcriptional regulation of the glucose phosphoenolpyruvate phosphotransferase system , 2004, Molecular microbiology.

[61]  G. Storz,et al.  A Small, Stable RNA Induced by Oxidative Stress: Role as a Pleiotropic Regulator and Antimutator , 1997, Cell.

[62]  F. Tétart,et al.  Regulation of the expression of the cell‐cycle gene ftsZ by DicF antisense RNA. Division does not require a fixed number of FtsZ molecules , 1992, Molecular microbiology.

[63]  Araceli M. Huerta,et al.  Genome-Wide Identification of Transcription Start Sites, Promoters and Transcription Factor Binding Sites in E. coli , 2009, PloS one.

[64]  J. Vogel,et al.  Coding sequence targeting by MicC RNA reveals bacterial mRNA silencing downstream of translational initiation , 2009, Nature Structural &Molecular Biology.

[65]  A. H. V. van Vliet Next generation sequencing of microbial transcriptomes: challenges and opportunities. , 2010, FEMS microbiology letters.