MOCCA-SURVEY Database - I. Coalescing binary black holes originating from globular clusters

In this first of a series of papers, we utilize results for around two thousand star cluster models simulated using the MOCCA code for star cluster evolution (Survey Database I) to determine the astrophysical properties and local merger rate densities for coalescing binary black holes (BBHs) originating from globular clusters (GCs). We extracted information for all coalescing BBHs that escape the cluster models and subsequently merge within a Hubble time along with BBHs that are retained in our GC models and merge inside the cluster via gravitational wave (GW) emission. By obtaining results from a substantial number of realistic star cluster models that cover different initial parameters, we have an extremely large statistical sample of BBHs with stellar mass and massive stellar BH ($\lesssim 100M_{\odot}$) components that merge within a Hubble time. Using this data, we estimate local merger rate densities for these BBHs originating from GCs to be at least 5.4 ${\rm Gpc}^{-3}\,{\rm yr}^{-1}$

[1]  B. A. Boom,et al.  Binary Black Hole Mergers in the First Advanced LIGO Observing Run , 2016, 1606.04856.

[2]  D Huet,et al.  GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence , 2016 .

[3]  Frederic A. Rasio,et al.  MERGING BLACK HOLE BINARIES IN GALACTIC NUCLEI: IMPLICATIONS FOR ADVANCED-LIGO DETECTIONS , 2016, 1606.04889.

[4]  M. Mapelli Massive black hole binaries from runaway collisions: the impact of metallicity , 2016, 1604.03559.

[5]  Takahiro Tanaka,et al.  Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914. , 2016, Physical review letters.

[6]  Tomasz Bulik,et al.  The first gravitational-wave source from the isolated evolution of two stars in the 40–100 solar mass range , 2016, Nature.

[7]  Robert W. Taylor,et al.  ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914 , 2016 .

[8]  Frederic A. Rasio,et al.  Binary Black Hole Mergers from Globular Clusters: Masses, Merger Rates, and the Impact of Stellar Evolution , 2016, 1602.02444.

[9]  S. Aarseth,et al.  The dragon simulations: globular cluster evolution with a million stars , 2016, 1602.00759.

[10]  M. Giersz,et al.  MOCCA code for star cluster simulations – IV. A new scenario for intermediate mass black hole formation in globular clusters , 2015, 1506.05234.

[11]  Bharath Pattabiraman,et al.  Binary Black Hole Mergers from Globular Clusters: Implications for Advanced LIGO. , 2015, Physical review letters.

[12]  Gabriela Gonzalez,et al.  The LIGO Scientific Collaboration , 2015 .

[13]  D. Heggie Towards an N-body model for the globular cluster M4 , 2014, 1409.5597.

[14]  Chunglee Kim,et al.  Compact binaries ejected from globular clusters as gravitational wave sources , 2013, 1308.1641.

[15]  Ataru Tanikawa,et al.  Dynamical evolution of stellar mass black holes in dense stellar clusters: estimate for merger rate of binary black holes originating from globular clusters , 2013, 1307.6268.

[16]  H. Katz,et al.  Two epochs of globular cluster formation from deep field luminosity functions: implications for reionization and the Milky Way satellites , 2012, 1211.6153.

[17]  D. Heggie,et al.  MOCCA code for star cluster simulations II: comparison with n-body simulations , 2011, 1112.6246.

[18]  H. Perets,et al.  SECULAR EVOLUTION OF COMPACT BINARIES NEAR MASSIVE BLACK HOLES: GRAVITATIONAL WAVE SOURCES AND OTHER EXOTICA , 2012, 1203.2938.

[19]  M. Giersz,et al.  Compact binaries in star clusters – II. Escapers and detection rates , 2010, 1008.5060.

[20]  Chris L. Fryer,et al.  ON THE MAXIMUM MASS OF STELLAR BLACK HOLES , 2009, 0904.2784.

[21]  Pavel Kroupa,et al.  Stellar-mass black holes in star clusters: implications for gravitational-wave radiation , 2009, Proceedings of the International Astronomical Union.

[22]  D. Lorimer,et al.  A statistical study of 233 pulsar proper motions , 2005, astro-ph/0504584.

[23]  F. Rasio,et al.  Stellar collisions during binary–binary and binary–single star interactions , 2004, astro-ph/0401004.

[24]  T. Bulik,et al.  Astrophysical significance of the detection of coalescing binaries with gravitational waves , 2003, astro-ph/0307237.

[25]  Evolution of binary stars and the effect of tides on binary populations , 2002, astro-ph/0201220.

[26]  Tomasz Bulik,et al.  A Comprehensive Study of Binary Compact Objects as Gravitational Wave Sources: Evolutionary Channels, Rates, and Physical Properties , 2001, astro-ph/0111452.

[27]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[28]  C. Tout,et al.  Comprehensive analytic formulae for stellar evolution as a function of mass and metallicity , 2000, astro-ph/0001295.

[29]  D. Heggie,et al.  The time-scale of escape from star clusters , 1999, astro-ph/9910468.

[30]  William E. Harris,et al.  A Catalog of Parameters for Globular Clusters in the Milky Way , 1996 .

[31]  P. Kroupa The dynamical properties of stellar systems in the Galactic disc , 1995, astro-ph/9508084.

[32]  Steinn Sigurdsson,et al.  Primordial black holes in globular clusters , 1993, Nature.

[33]  P. C. Peters Gravitational Radiation and the Motion of Two Point Masses , 1964 .