Exact outage probability analysis of proactive relay selection in cognitive radio networks with MRC receivers

Proactive relay selection in cognitive radio networks has recently received considerable attention. However, its outage probability analysis is limited to partially-identical fading distributions, uncorrelation among received signal-to-noise ratios (SNRs), and no direct channel. This paper completes this literature deficiency by generalizing the existing analysis for non-identical fading distributions, correlation among received SNRs, and with direct channel. Numerous results demonstrate that relay selection with a direct channel achieves a higher diversity order and superior performance than that without a direct channel at virtually no cost of power and bandwidth. Further, proactive relay selection suffers an error floor at either a large maximum transmit power or large maximum interference power; however, the error floor level can be significantly remedied with an increase in the number of relays.