Nanocrystalline Iron Monosulfides Near Stoichiometry

[1]  H. Sheu,et al.  Phase transition of iron sulphide minerals under hydrothermal conditions and magnetic investigations , 2017, Physics and Chemistry of Minerals.

[2]  Shaylin A. Cetegen,et al.  Mesoporous Iron Sulfide for Highly Efficient Electrocatalytic Hydrogen Evolution. , 2017, Journal of the American Chemical Society.

[3]  Wenge Yang,et al.  Observation of two superconducting domes under pressure in tetragonal FeS , 2017 .

[4]  A. Sefat,et al.  Structure and property correlations in FeS , 2017 .

[5]  S. Streltsov,et al.  Suppression of magnetism under pressure in FeS: A DFT+DMFT study , 2016, 1608.02360.

[6]  A. Chukin,et al.  Iron sulfide (troilite) inclusion extracted from Sikhote-Alin iron meteorite: Composition, structure and magnetic properties , 2016 .

[7]  J. Goodship,et al.  Removal of Arsenic from water using synthetic Fe7S8 nanoparticles. , 2016, Chemical engineering journal.

[8]  Jianxi Zhu,et al.  Morphology controllable syntheses of micro- and nano-iron pyrite mono- and poly-crystals: a review , 2016 .

[9]  L. Craco,et al.  Electronic localization and bad-metallicity in pure and electron-doped troilite: A local-density-approximation plus dynamical-mean-field-theory study of FeS for lithium-ion batteries , 2016 .

[10]  E. Bousquet,et al.  Unveiling the Room-Temperature Magnetoelectricity of Troilite FeS. , 2015, Physical review letters.

[11]  I. Schuller,et al.  Search for New Superconductors: an Electro-Magnetic Phase Transition in an Iron Meteorite Inclusion at 117 K , 2015, 1509.04452.

[12]  Fuqiang Huang,et al.  Observation of Superconductivity in Tetragonal FeS. , 2015, Journal of the American Chemical Society.

[13]  Sijbren Otto,et al.  Supramolecular systems chemistry. , 2015, Nature nanotechnology.

[14]  Blaise J. Thompson,et al.  Ionization of high-density deep donor defect states explains the low photovoltage of iron pyrite single crystals. , 2014, Journal of the American Chemical Society.

[15]  A. Paul Alivisatos,et al.  Cation Exchange: A Versatile Tool for Nanomaterials Synthesis , 2013 .

[16]  K. V. Van Vliet,et al.  Electronic states of intrinsic surface and bulk vacancies in FeS2 , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[17]  C. Stoldt,et al.  Iron pyrite nanocubes: size and shape considerations for photovoltaic application. , 2012, ACS nano.

[18]  M. Law,et al.  Effect of surface stoichiometry on the band gap of the pyrite FeS2(100) surface , 2012 .

[19]  M. Law,et al.  First-principles studies of the electronic properties of native and substitutional anionic defects in bulk iron pyrite , 2012 .

[20]  Weiling Luan,et al.  One-Step Synthesis of Fe3S4 Micro-Crystals and its Facile Transformation to Fe7S8 Micro-Crystals , 2011 .

[21]  Gérard Demazeau,et al.  Solvothermal and hydrothermal processes: the main physico-chemical factors involved and new trends , 2011 .

[22]  C. Lind,et al.  Facile synthesis of troilite. , 2008, Inorganic chemistry.

[23]  L. Benning,et al.  Greigite: a true intermediate on the polysulfide pathway to pyrite , 2007, Geochemical transactions.

[24]  G. Luther,et al.  Chemistry of iron sulfides. , 2007, Chemical reviews.

[25]  S. Russek,et al.  Ripening during magnetite nanoparticle synthesis: Resulting interfacial defects and magnetic properties , 2005 .

[26]  Hai-peng Wang,et al.  A review on the mineral chemistry of the non-stoichiometric iron sulphide, Fe1− x S (0 ≤  x  ≤ 0.125): polymorphs, phase relations and transitions, electronic and magnetic structures , 2005 .

[27]  T. Duffy Synchrotron facilities and the study of the Earth's deep interior , 2005 .

[28]  Stephen A. Wells,et al.  Ab-initio simulations of magnetic iron sulphides , 2005 .

[29]  Harold A Scheraga,et al.  Exercises in prognostication: crystal structures and protein folding. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[30]  K. Knight,et al.  Structure and magnetism in synthetic pyrrhotite Fe 7 S 8 : A powder neutron-diffraction study , 2004 .

[31]  W. Skinner,et al.  XPS identification of bulk hole defects and itinerant Fe 3d electrons in natural troilite (FeS) , 2004 .

[32]  Anton Kokalj,et al.  Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale , 2003 .

[33]  Georg Kresse,et al.  Electronic correlation effects in transition-metal sulfides , 2003 .

[34]  Brian H. Toby,et al.  EXPGUI, a graphical user interface for GSAS , 2001 .

[35]  G. Cody,et al.  Primordial carbonylated iron-sulfur compounds and the synthesis of pyruvate. , 2000, Science.

[36]  Jürgen Hafner,et al.  Magnetism and magneto-structural effects in transition-metal sulphides , 1999 .

[37]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[38]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[39]  G. Kresse,et al.  Ab initio density functional studies of transition-metal sulphides: II. Electronic structure , 1997 .

[40]  A. Lichtenstein,et al.  First-principles calculations of electronic structure and spectra of strongly correlated systems: the LDA+U method , 1997 .

[41]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[42]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[43]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[44]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[45]  H. Mao,et al.  Structure and Density of FeS at High Pressure and High Temperature and the Internal Structure of Mars , 1995, Science.

[46]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[47]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[48]  G. Luther Pyrite synthesis via polysulfide compounds , 1991 .

[49]  Hartmann,et al.  Sulfur deficiency in iron pyrite (FeS2-x) and its consequences for band-structure models. , 1991, Physical review. B, Condensed matter.

[50]  O. Kruse Moessbauer and X-ray study of the effects of vacancy concentration in synthetic hexagonal pyrrhotites , 1990 .

[51]  M. Dekkers Magnetic properties of natural pyrrhotite Part I: Behaviour of initial susceptibility and saturation-magnetization-related rock-magnetic parameters in a grain-size dependent framework , 1988 .

[52]  Cohen,et al.  Theory of electron band tails and the Urbach optical-absorption edge. , 1986, Physical review letters.

[53]  S. Scott,et al.  Phase relations involving pyrrhotite below 350 degrees C , 1982 .

[54]  N. Morimoto,et al.  Crystallography and stability of pyrrhotites , 1975 .

[55]  M. Fleet The crystal structure of a pyrrhotite (Fe7S8) , 1971 .

[56]  R. Berner Stability Fields of Iron Minerals in Anaerobic Marine Sediments , 1964, The Journal of geology.

[57]  F. Urbach The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids , 1953 .

[58]  Thomas A. Yersak,et al.  Solid State Enabled Reversible Four Electron Storage , 2013 .

[59]  D. Strongin,et al.  Surface reactivity of pyrite and related sulfides , 2009 .

[60]  R. LrnqNrrc,et al.  Transformation of synthetic mackinawite to hexagonal pyrrhotite : A kinetic study , 2007 .

[61]  R. Pattrick,et al.  Electrical and magnetic properties of sulfides , 2006 .

[62]  Artin,et al.  An ab initio study of the relative stabilities and equations of state of FeS polymorphs , 2001 .

[63]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[64]  N. Morimoto,et al.  Pyrrhotite Phase Relations below 320°C , 1970 .

[65]  T. A. Bak,et al.  Magnetic Phase Transitions in Stoichiometric FeS Studied by Means of Neutron Diffraction. , 1960 .