In silico approaches to microarray-based disease classification and gene function discovery

The automated analysis of transcriptional profiling data promises a wealth of information that may be used to develop a more complete understanding of gene function and interactions. Moreover, it may improve the effectiveness of complex diagnostic tasks. This article discusses important data mining and management techniques to analyse genome-wide expression data. It reviews some of the major discovery goals, methods and applications in a number of biomedical domains. Finally, this paper highlights key problems that need to be approached by a new generation of computational solutions.

[1]  S. Hyakin,et al.  Neural Networks: A Comprehensive Foundation , 1994 .

[2]  Ronald W. Davis,et al.  Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray , 1995, Science.

[3]  G. S. Johnson,et al.  An Information-Intensive Approach to the Molecular Pharmacology of Cancer , 1997, Science.

[4]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[5]  M. Bittner,et al.  Expression profiling using cDNA microarrays , 1999, Nature Genetics.

[6]  P. Goodfellow,et al.  DNA microarrays in drug discovery and development , 1999, Nature Genetics.

[7]  J. Mesirov,et al.  Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. , 1999, Science.

[8]  D. Botstein,et al.  The transcriptional program in the response of human fibroblasts to serum. , 1999, Science.

[9]  D. Botstein,et al.  Exploring the new world of the genome with DNA microarrays , 1999, Nature Genetics.

[10]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[11]  J. Mesirov,et al.  Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[12]  D. Gerhold,et al.  DNA chips: promising toys have become powerful tools. , 1999, Trends in biochemical sciences.

[13]  M. Morley,et al.  Making and reading microarrays , 1999, Nature Genetics.

[14]  N. Sampas,et al.  Molecular classification of cutaneous malignant melanoma by gene expression profiling , 2000, Nature.

[15]  E. Rubin,et al.  Perspectives for vascular genomics , 2000, Nature.

[16]  E. Winzeler,et al.  Genomics, gene expression and DNA arrays , 2000, Nature.

[17]  Nello Cristianini,et al.  Support vector machine classification and validation of cancer tissue samples using microarray expression data , 2000, Bioinform..

[18]  Christian A. Rees,et al.  Molecular portraits of human breast tumours , 2000, Nature.

[19]  Eric S. Lander,et al.  Genomic analysis of metastasis reveals an essential role for RhoC , 2000, Nature.

[20]  Pierre Baldi,et al.  Assessing the accuracy of prediction algorithms for classification: an overview , 2000, Bioinform..

[21]  J. Fitch,et al.  Genomic engineering: moving beyond DNA sequence to function , 2000, Proceedings of the IEEE.

[22]  Ash A. Alizadeh,et al.  Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling , 2000, Nature.

[23]  Christian A. Rees,et al.  Systematic variation in gene expression patterns in human cancer cell lines , 2000, Nature Genetics.

[24]  George M. Church,et al.  Biclustering of Expression Data , 2000, ISMB.

[25]  D. Botstein,et al.  A gene expression database for the molecular pharmacology of cancer , 2000, Nature Genetics.

[26]  Pierre Baldi,et al.  A Bayesian framework for the analysis of microarray expression data: regularized t -test and statistical inferences of gene changes , 2001, Bioinform..

[27]  Ka Yee Yeung,et al.  Validating clustering for gene expression data , 2001, Bioinform..

[28]  Sankar K. Pal,et al.  Soft Computing in Case Based Reasoning , 2000, Springer London.

[29]  M. Ringnér,et al.  Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks , 2001, Nature Medicine.

[30]  Kate Johnson,et al.  MAPS: a microarray project system for gene expression experiment information and data validation , 2001, Bioinform..

[31]  S. Dhanasekaran,et al.  Delineation of prognostic biomarkers in prostate cancer , 2001, Nature.

[32]  Edward R. Dougherty,et al.  Small Sample Issues for Microarray-Based Classification , 2001, Comparative and functional genomics.

[33]  A. Schuster,et al.  Tumor classification by gene expression profiling: comparison and validation of five clustering methods , 2001, SIGB.

[34]  Sayan Mukherjee,et al.  Molecular classification of multiple tumor types , 2001, ISMB.

[35]  J. Michael Cherry,et al.  Visualization of expression clusters using Sammon's non-linear mapping , 2001, Bioinform..

[36]  Francisco Azuaje,et al.  A computational neural approach to support the discovery of gene function and classes of cancer , 2001, IEEE Transactions on Biomedical Engineering.

[37]  Francisco Azuaje,et al.  A cluster validity framework for genome expression data , 2002, Bioinform..

[38]  Partha S. Vasisht Computational Analysis of Microarray Data , 2003 .