Length Scales of the Neutral Wind Profile over Homogeneous Terrain

Abstract The wind speed profile for the neutral boundary layer is derived for a number of mixing-length parameterizations, which account for the height of the boundary layer. The wind speed profiles show good agreement with the reanalysis of the Leipzig wind profile (950 m high) and with combined cup–sonic anemometer and lidar measurements (300 m high) performed over flat and homogeneous terrain at Hovsore, Denmark. In the surface layer, the mixing-length parameterizations agree well with the traditional surface-layer theory, but the wind speed profile is underestimated when the surface-layer scaling is extended to the entire boundary layer, demonstrating the importance of the boundary layer height as a scaling parameter. The turbulence measurements, performed up to 160-m height only at the Hovsore site, provide the opportunity to derive the spectral-length scales from two spectral models. Good agreement is found between the behaviors of the mixing- and spectral-length scales.

[1]  S. Zilitinkevich,et al.  Velocity profiles, the resistance law and the dissipation rate of mean flow kinetic energy in a neutrally and stably stratified planetary boundary layer , 1989 .

[2]  R. Stull An Introduction to Boundary Layer Meteorology , 1988 .

[3]  J. Mann,et al.  Laser measurements of flow over a forest , 2007 .

[4]  Martin R. Maxey,et al.  Distortion of turbulence in flows with parallel streamlines , 1982, Journal of Fluid Mechanics.

[5]  J. Bergmann Comments on: ‘The Neutral, Barotropic Planetary Boundary Layer, Capped by a Low-Level Inversion’ by G. D. Hess, Boundary-Layer Meteorology (2004) 110, pp. 319–355 , 2006 .

[6]  J. Wyngaard,et al.  Cospectral similarity in the atmospheric surface layer , 1972 .

[7]  S. Larsen,et al.  On the extension of the wind profile over homogeneous terrain beyond the surface boundary layer , 2007 .

[8]  U. Högström Non-dimensional wind and temperature profiles in the atmospheric surface layer: A re-evaluation , 1988 .

[9]  A. Smedman,et al.  Diagnostic and prognostic equations for the depth of the stably stratified Ekman boundary layer , 2002 .

[10]  G. Hess Reply to “Comments on: The Neutral, Barotropic Planetary Boundary Layer Capped by a Low-level Inversion” , 2006 .

[11]  S. Gryning,et al.  Offshore wind profiling using light detection and ranging measurements , 2009 .

[12]  I. Esau,et al.  On Integral Measures Of The Neutral Barotropic Planetary Boundary Layer , 2002 .

[13]  Thomas Foken,et al.  New Equations For Sonic Temperature Variance And Buoyancy Heat Flux With An Omnidirectional Sonic Anemometer , 2001 .

[14]  P. Davies Structure of turbulence , 1973 .

[15]  Albert A. M. Holtslag,et al.  Estimates of diabatic wind speed profiles from near-surface weather observations , 1984 .

[16]  Per Jonas Petter Lindelöw,et al.  Testing and comparison of lidars for profile and turbulence measurements in wind energy , 2008 .

[17]  A. Blackadar The vertical distribution of wind and turbulent exchange in a neutral atmosphere , 1962 .

[18]  F. Durst,et al.  Evaluating the law of the wall in two-dimensional fully developed turbulent channel flows , 2003 .

[19]  J. King,et al.  Waves and turbulence in stably stratified flows , 1993 .

[20]  A. K. Blackadar,et al.  Investigation of the turbulent wind field below 150-meter altitude at the eastern test range , 1969 .

[21]  Jake Badger,et al.  Wind Resource Estimation—An Overview , 2003 .

[22]  H. Tennekes,et al.  Asymptotic Similarity in Neutral Barotropic Planetary Boundary Layers , 1968 .

[23]  Jakob Mann,et al.  Laser measurements of flow over a forest , 2008 .

[24]  H. Karam,et al.  NUMERICAL MODELING OF THE PLANETARY BOUNDARY LAYER , 2004 .

[25]  Alfredo Peña,et al.  Charnock’s Roughness Length Model and Non-dimensional Wind Profiles Over the Sea , 2008 .

[26]  W. Tollmien,et al.  Bericht über Untersuchungen zur ausgebildeten Turbulenz , 1961 .

[27]  P. Mason Atmospheric boundary layer flows: Their structure and measurement , 1995 .

[28]  H. Lettau A Re‐examination of the “Leipzig Wind Profile” Considering some Relations between Wind and Turbulence in the Frictional Layer , 1950 .

[29]  G. Hess The Neutral, Barotropic Planetary Boundary Layer, Capped by a Low-Level Inversion , 2004 .

[30]  J. Mann The spatial structure of neutral atmospheric surface-layer turbulence , 1994, Journal of Fluid Mechanics.

[31]  J. Garratt,et al.  Evaluating Models of The Neutral, Barotropic Planetary Boundary Layer using Integral Measures: Part I. Overview , 2002 .

[32]  J. Kaimal,et al.  Spectral Characteristics of Surface-Layer Turbulence , 1972 .

[33]  I. Esau,et al.  Resistance and heat‐transfer laws for stable and neutral planetary boundary layers: Old theory advanced and re‐evaluated , 2005 .

[34]  Andrew Oldroyd,et al.  An eight month test campaign of the Qinetiq ZephIR system: Preliminary results , 2007 .

[35]  C. Rossby,et al.  The layer of frictional influence in wind and ocean currents , 1935 .

[36]  H. Jørgensen,et al.  Wind lidar evaluation at the Danish wind test site in Høvsøre , 2006 .

[37]  P. Guest,et al.  Evaluations of the von Kármán constant in the atmospheric surface layer , 2006, Journal of Fluid Mechanics.

[38]  S. Gryning,et al.  Measurements and Modelling of the Wind Speed Profile in the Marine Atmospheric Boundary Layer , 2008 .

[39]  H. Panofsky,et al.  Wind profiles and change of terrain roughness at Risø , 1972 .

[40]  Hans A. Panofsky,et al.  Profiles of Wind and Temperature from Towers over Homogeneous Terrain. , 1973 .

[41]  ICHAEL,et al.  Comparison of 3D turbulence measurements using three staring wind lidars and a sonic anemometer , 2012 .

[42]  Torben Mikkelsen,et al.  Comparison of 3D turbulence measurements using three staring wind lidars and a sonic anemometer , 2008 .