QUADRATURE ON A SPHERICAL SURFACE

Approximately calculating integrals over spherical surfaces in R3 can be done by simple extensions of one dimensional quadrature rules. This, however, does not make use of the symmetry or structure of the integration domain and potentially better schemes can be devised by directly using the integration surface in R3. We investigate several quadrature schemes for integration over a spherical surface in R3, such as Lebedev quadratures and spherical designs, and numerically test their performance on a set of test functions.

[1]  P. Seymour,et al.  Averaging sets: A generalization of mean values and spherical designs , 1984 .

[2]  P. Mitchell A chemist's guide to density functional theory. Wolfram Koch and Max C. Holthausen. Wiley–VCH, Weinheim, 2000. x + 294 pages. £70 ISBN 3‐527‐29918‐1 , 2000 .

[3]  V. Lebedev Values of the nodes and weights of ninth to seventeenth order gauss-markov quadrature formulae invariant under the octahedron group with inversion☆ , 1975 .

[4]  Bengt Fornberg,et al.  On spherical harmonics based numerical quadrature over the surface of a sphere , 2014, Advances in Computational Mathematics.

[5]  Manuel Gräf,et al.  On the computation of spherical designs by a new optimization approach based on fast spherical Fourier transforms , 2011, Numerische Mathematik.

[6]  Gregory Beylkin,et al.  Rotationally invariant quadratures for the sphere , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[7]  S. Smale Mathematical problems for the next century , 1998 .

[8]  S. L. Sobolev Cubature Formulas on the Sphere Invariant under Finite Groups of Rotations , 2006 .

[9]  V. I. Lebedev,et al.  Spherical quadrature formulas exact to orders 25–29 , 1977 .

[10]  V. I. Lebedev,et al.  Quadratures on a sphere , 1976 .

[11]  Steven B. Damelin,et al.  Energy functionals, numerical integration and asymptotic equidistribution on the sphere , 2003, J. Complex..

[12]  Andriy Bondarenko,et al.  Well-Separated Spherical Designs , 2013, 1303.5991.

[13]  Johann S. Brauchart,et al.  Distributing many points on spheres: Minimal energy and designs , 2014, J. Complex..

[14]  Robert S. Womersley,et al.  Efficient Spherical Designs with Good Geometric Properties , 2017, 1709.01624.

[15]  V. Lebedev,et al.  A QUADRATURE FORMULA FOR THE SPHERE OF THE 131ST ALGEBRAIC ORDER OF ACCURACY , 1999 .

[16]  Enrique Bendito,et al.  Estimation of Fekete points , 2007, J. Comput. Phys..

[17]  C. W. Murray,et al.  Quadrature schemes for integrals of density functional theory , 1993 .

[18]  Alvise Sommariva,et al.  INTEGRATION BY RBF OVER THE SPHERE , 2005 .

[19]  L. C. Henyey,et al.  Diffuse radiation in the Galaxy , 1940 .

[20]  Eiichi Bannai,et al.  A survey on spherical designs and algebraic combinatorics on spheres , 2009, Eur. J. Comb..

[21]  A. D. McLaren,et al.  Optimal numerical integration on a sphere , 1963 .

[22]  William H. Press,et al.  Numerical Recipes 3rd Edition: The Art of Scientific Computing , 2007 .

[23]  N. J. A. Sloane,et al.  McLaren’s improved snub cube and other new spherical designs in three dimensions , 1996, Discret. Comput. Geom..

[24]  J. Seidel,et al.  Spherical codes and designs , 1977 .