QUADRATURE ON A SPHERICAL SURFACE
暂无分享,去创建一个
[1] P. Seymour,et al. Averaging sets: A generalization of mean values and spherical designs , 1984 .
[2] P. Mitchell. A chemist's guide to density functional theory. Wolfram Koch and Max C. Holthausen. Wiley–VCH, Weinheim, 2000. x + 294 pages. £70 ISBN 3‐527‐29918‐1 , 2000 .
[3] V. Lebedev. Values of the nodes and weights of ninth to seventeenth order gauss-markov quadrature formulae invariant under the octahedron group with inversion☆ , 1975 .
[4] Bengt Fornberg,et al. On spherical harmonics based numerical quadrature over the surface of a sphere , 2014, Advances in Computational Mathematics.
[5] Manuel Gräf,et al. On the computation of spherical designs by a new optimization approach based on fast spherical Fourier transforms , 2011, Numerische Mathematik.
[6] Gregory Beylkin,et al. Rotationally invariant quadratures for the sphere , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[7] S. Smale. Mathematical problems for the next century , 1998 .
[8] S. L. Sobolev. Cubature Formulas on the Sphere Invariant under Finite Groups of Rotations , 2006 .
[9] V. I. Lebedev,et al. Spherical quadrature formulas exact to orders 25–29 , 1977 .
[10] V. I. Lebedev,et al. Quadratures on a sphere , 1976 .
[11] Steven B. Damelin,et al. Energy functionals, numerical integration and asymptotic equidistribution on the sphere , 2003, J. Complex..
[12] Andriy Bondarenko,et al. Well-Separated Spherical Designs , 2013, 1303.5991.
[13] Johann S. Brauchart,et al. Distributing many points on spheres: Minimal energy and designs , 2014, J. Complex..
[14] Robert S. Womersley,et al. Efficient Spherical Designs with Good Geometric Properties , 2017, 1709.01624.
[15] V. Lebedev,et al. A QUADRATURE FORMULA FOR THE SPHERE OF THE 131ST ALGEBRAIC ORDER OF ACCURACY , 1999 .
[16] Enrique Bendito,et al. Estimation of Fekete points , 2007, J. Comput. Phys..
[17] C. W. Murray,et al. Quadrature schemes for integrals of density functional theory , 1993 .
[18] Alvise Sommariva,et al. INTEGRATION BY RBF OVER THE SPHERE , 2005 .
[19] L. C. Henyey,et al. Diffuse radiation in the Galaxy , 1940 .
[20] Eiichi Bannai,et al. A survey on spherical designs and algebraic combinatorics on spheres , 2009, Eur. J. Comb..
[21] A. D. McLaren,et al. Optimal numerical integration on a sphere , 1963 .
[22] William H. Press,et al. Numerical Recipes 3rd Edition: The Art of Scientific Computing , 2007 .
[23] N. J. A. Sloane,et al. McLaren’s improved snub cube and other new spherical designs in three dimensions , 1996, Discret. Comput. Geom..
[24] J. Seidel,et al. Spherical codes and designs , 1977 .