Weak, strong, and strong cyclic planning via symbolic model checking

Planning in nondeterministic domains yields both conceptual and practical difficulties. From the conceptual point of view, different notions of planning problems can be devised: for instance, a plan might either guarantee goal achievement, or just have some chances of success. From the practical point of view, the problem is to devise algorithms that can effectively deal with large state spaces. In this paper, we tackle planning in nondeterministic domains by addressing conceptual and practical problems. We formally characterize different planning problems, where solutions have a chance of success ("weak planning"), are guaranteed to achieve the goal ("strong planning"), or achieve; the goal with iterative trial-and-error strategies ("strong cyclic planning"). In strong cyclic planning, all the executions associated with the solution plan always have a possibility of terminating and, when they do, they are guaranteed to achieve the goal. We present planning algorithms for these problem classes, and prove that they are correct and complete. We implement the algorithms in the MBP planner by using symbolic model checking techniques. We show that our approach is practical with an extensive experimental evaluation: MBP compares positively with state-of-the-art planners, both in terms of expressiveness and in terms of performance.

[1]  Piergiorgio Bertoli,et al.  Improving Heuristics for Planning as Search in Belief Space , 2002, AIPS.

[2]  Manuela M. Veloso,et al.  OBDD-based Universal Planning for Synchronized Agents in Non-Deterministic Domains , 2000, J. Artif. Intell. Res..

[3]  Edmund M. Clarke,et al.  Design and Synthesis of Synchronization Skeletons Using Branching-Time Temporal Logic , 1981, Logic of Programs.

[4]  Stephan Merz,et al.  Model Checking , 2000 .

[5]  T. Dean,et al.  Planning under uncertainty: structural assumptions and computational leverage , 1996 .

[6]  Marcel Schoppers,et al.  Universal Plans for Reactive Robots in Unpredictable Environments , 1987, IJCAI.

[7]  Fabio Somenzi,et al.  CUDD: CU Decision Diagram Package Release 2.2.0 , 1998 .

[8]  Joseph Sifakis,et al.  On the Synthesis of Discrete Controllers for Timed Systems (An Extended Abstract) , 1995, STACS.

[9]  Marco Roveri,et al.  Conformant Planning via Symbolic Model Checking , 2000, J. Artif. Intell. Res..

[10]  Michel Barbeau,et al.  Planning Control Rules for Reactive Agents , 1997, Artif. Intell..

[11]  Giuseppe De Giacomo,et al.  Automata-Theoretic Approach to Planning for Temporally Extended Goals , 1999, ECP.

[12]  Randal E. Bryant,et al.  Graph-Based Algorithms for Boolean Function Manipulation , 1986, IEEE Transactions on Computers.

[13]  Amir Pnueli,et al.  Symbolic Controller Synthesis for Discrete and Timed Systems , 1994, Hybrid Systems.

[14]  Craig Boutilier,et al.  Decision-Theoretic Planning: Structural Assumptions and Computational Leverage , 1999, J. Artif. Intell. Res..

[15]  Piergiorgio Bertoli,et al.  Planning in Nondeterministic Domains under Partial Observability via Symbolic Model Checking , 2001, IJCAI.

[16]  David E. Smith,et al.  Extending Graphplan to handle uncertainty and sensing actions , 1998, AAAI 1998.

[17]  Robert P. Goldman,et al.  Using Model Checking to Plan Hard Real-Time Controllers , 2000 .

[18]  Fausto Giunchiglia,et al.  Planning via Model Checking: A Decision Procedure for AR , 1997, ECP.

[19]  Marco Pistore,et al.  Planning as Model Checking for Extended Goals in Non-deterministic Domains , 2001, IJCAI.

[20]  Moshe Y. Vardi Branching vs. Linear Time: Final Showdown , 2001, TACAS.

[21]  Jesse Hoey,et al.  SPUDD: Stochastic Planning using Decision Diagrams , 1999, UAI.

[22]  Hector J. Levesque,et al.  What Is Planning in the Presence of Sensing? , 1996, AAAI/IAAI, Vol. 2.

[23]  Marco Pistore,et al.  Planning with a language for extended goals , 2002, AAAI/IAAI.

[24]  Bart Selman,et al.  Encoding Plans in Propositional Logic , 1996, KR.

[25]  Marco Roveri,et al.  Recent Advances in AI Planning , 1999, Lecture Notes in Computer Science.

[26]  Edmund M. Clarke,et al.  Symbolic Model Checking: 10^20 States and Beyond , 1990, Inf. Comput..

[27]  David E. Smith,et al.  Conformant Graphplan , 1998, AAAI/IAAI.

[28]  Gregg Collins,et al.  Planning for Contingencies: A Decision-based Approach , 1996, J. Artif. Intell. Res..

[29]  Sérgio Vale Aguiar Campos,et al.  Symbolic Model Checking , 1993, CAV.

[30]  Edmund M. Clarke,et al.  Formal Methods: State of the Art and Future Directions Working Group Members , 1996 .

[31]  Orna Kupfermant,et al.  Synthesis with Incomplete Informatio , 2000 .

[32]  Marco Pistore,et al.  Integrating BDD-Based and SAT-Based Symbolic Model Checking , 2002, FroCoS.

[33]  Jan van Leeuwen,et al.  Handbook of Theoretical Computer Science, Vol. B: Formal Models and Semantics , 1994 .

[34]  Fausto Giunchiglia,et al.  NUSMV: a new symbolic model checker , 2000, International Journal on Software Tools for Technology Transfer.

[35]  A. Pnueli,et al.  On the Synthesis of an Asynchronous Reactive Module , 1989, ICALP.

[36]  Fahiem Bacchus,et al.  Using temporal logics to express search control knowledge for planning , 2000, Artif. Intell..

[37]  Moshe Y. Vardi An Automata-Theoretic Approach to Fair Realizability and Synthesis , 1995, CAV.

[38]  Fausto Giunchiglia,et al.  Planning as Model Checking , 1999, ECP.

[39]  Randal E. Bryant,et al.  Efficient implementation of a BDD package , 1991, DAC '90.

[40]  Fahiem Bacchus,et al.  Proceedings of the International Conference on Artificial Intelligence Planning and Scheduling (AIPS 2002) , 2002, AAAI 2002.

[41]  Alfredo Milani,et al.  New directions in AI planning , 1996 .

[42]  Paolo Traverso,et al.  Automatic OBDD-Based Generation of Universal Plans in Non-Deterministic Domains , 1998, AAAI/IAAI.

[43]  Fred Kröger,et al.  Temporal Logic of Programs , 1987, EATCS Monographs on Theoretical Computer Science.

[44]  Enrico Giunchiglia,et al.  Representing Action: Indeterminacy and Ramifications , 1997, Artif. Intell..

[45]  E. Allen Emerson,et al.  Temporal and Modal Logic , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[46]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[47]  Parosh Aziz Abdulla,et al.  Symbolic Reachability Analysis Based on SAT-Solvers , 2000, TACAS.

[48]  Armin Biere,et al.  Symbolic Model Checking without BDDs , 1999, TACAS.

[49]  Reid G. Simmons,et al.  Real-Time Search in Non-Deterministic Domains , 1995, IJCAI.

[50]  Fausto Giunchiglia,et al.  NUSMV: A New Symbolic Model Verifier , 1999, CAV.

[51]  Fahiem Bacchus,et al.  A Knowledge-Based Approach to Planning with Incomplete Information and Sensing , 2002, AIPS.

[52]  Paolo Traverso,et al.  Strong Planning in Non-Deterministic Domains Via Model Checking , 1998, AIPS.

[53]  Malte Helmert,et al.  Exhibiting Knowledge in Planning Problems to Minimize State Encoding Length , 1999, ECP.

[54]  Malte Helmert,et al.  On the Implementation of MIPS , 2000 .

[55]  M. Veloso,et al.  OBDD-Based Optimistic and Strong Cyclic Adversarial Planning , 2014 .

[56]  Reid G. Simmons,et al.  Solving Robot Navigation Problems with Initial Pose Uncertainty Using Real-Time Heuristic Search , 1998, AIPS.

[57]  Sven Koenig,et al.  Gridworlds as Testbeds for Planning with Incomplete Information , 2000, AAAI/IAAI.

[58]  Robert P. Goldman,et al.  Dynamic Abstraction Planning , 1997, AAAI/IAAI.

[59]  Andrew G. Barto,et al.  Learning to Act Using Real-Time Dynamic Programming , 1995, Artif. Intell..

[60]  Paolo Traverso,et al.  Strong Cyclic Planning Revisited , 1999, ECP.

[61]  David H. D. Warren,et al.  Generating Conditional Plans and Programs , 1976, AISB.

[62]  Toby Walsh,et al.  Proceedings of the Seventeenth National Conference on Artificial Intelligence and Twelfth Conference on on Innovative Applications of Artificial Intelligence, July 30 - August 3, 2000, Austin, Texas, USA , 2000, AAAI 2000.

[63]  Jussi Rintanen,et al.  Improvements to the Evaluation of Quantified Boolean Formulae , 1999, IJCAI.

[64]  A. Cimatti,et al.  itc . it PLAN VALIDATION FOR EXTENDED GOALS UNDER PARTIAL OBSERVABILITY ( PRELIMINARY REPORT , 2002 .

[65]  Jussi Rintanen,et al.  Constructing Conditional Plans by a Theorem-Prover , 1999, J. Artif. Intell. Res..

[66]  Patrick Brézillon,et al.  Lecture Notes in Artificial Intelligence , 1999 .

[67]  Blai Bonet,et al.  Planning with Incomplete Information as Heuristic Search in Belief Space , 2000, AIPS.

[68]  Mark A. Peot,et al.  Conditional nonlinear planning , 1992 .

[69]  Kenneth L. McMillan,et al.  Symbolic model checking , 1992 .

[70]  Piergiorgio Bertoli,et al.  Heuristic Search + Symbolic Model Checking = Efficient Conformant Planning , 2001, IJCAI.