Advances in Modeling and Simulation of Grinding Processes

In the last decade the relevance of modeling and simulation of grinding processes has significantly risen which is caused by industrial needs and is indicated by the number of publications and research activities in this area. This keynote paper results from a collaborative work within the STC G and gives an overview of the current state of the art in modeling and simulation of grinding processes: Physical process models (analytical and numerical models) and empirical process models (regression analysis, artificial neural net models) as well as heuristic process models (rule based models) are taken into account, and outlined with respect to their achievements in this paper. The models are characterized by the process parameters such as grinding force, grinding temperature, etc. as well as work results including surface topography and surface integrity. Furthermore, the capabilities and the limitations of the presented model types and simulation approaches will be exemplified.

[1]  Liangchi Zhang,et al.  A fuzzy model for predicting burns in surface grinding of steel , 2004 .

[2]  G. J. Trmal,et al.  Optimum selection of grinding parameters using process modelling and knowledge based system approach , 1991 .

[3]  F. Girosi,et al.  Networks for approximation and learning , 1990, Proc. IEEE.

[4]  S. Malkin,et al.  Temperatures and Energy Partition for Grinding with Vitrified CBN Wheels , 1999 .

[5]  Xun Chen,et al.  Analysis and simulation of the grinding process. Part III: Comparison with experiment , 1996 .

[6]  S. S. Law,et al.  Simulation Study of the Grinding Process , 1973 .

[7]  Athanasios G. Mamalis,et al.  Thermal Modelling of Surface Grinding Using Implicit Finite Element Techniques , 2003 .

[8]  J. C. Jaeger Moving sources of heat and the temperature at sliding contacts , 1943, Journal and proceedings of the Royal Society of New South Wales.

[9]  Tien-Chien Jen,et al.  A Variable Heat Flux Model of Heat Transfer in Grinding With Boiling , 1996 .

[10]  Stephen Malkin,et al.  Inverse heat transfer analysis of grinding, Part 1: Methods , 1996 .

[11]  W. B. Rowe,et al.  Temperatures in High Efficiency Deep Grinding (HEDG) , 2001 .

[12]  S. Malkin,et al.  Analysis of Transient Temperatures in Grinding , 1995 .

[13]  Helcio R. B. Orlande,et al.  Estimation of the Boundary Heat Flux in Grinding via the Conjugate Gradient Method , 2000 .

[14]  Philip Koshy,et al.  Simulation of diamond-ground surfaces , 1999 .

[15]  Steven C. Fawcett,et al.  Development of a model for precision contour grinding of brittle materials , 1991 .

[16]  Günter Warnecke,et al.  Kinematic Simulation for Analyzing and Predicting High-Performance Grinding Processes , 1998 .

[17]  S. Malkin,et al.  Effects of Rotary Dressing on Grinding Wheel Performance , 1978 .

[18]  Stephen Malkin,et al.  Computer Simulation for Cylindrical Plunge Grinding , 1993 .

[19]  Yung C. Shin,et al.  Evolutionary modelling and optimization of grinding processes , 2000 .

[20]  K Steffens,et al.  Closed Loop Simulation of Grinding , 1983 .

[21]  J. Verkerk,et al.  Final Report Concerning CIRP Cooperative Work on the Characterization of Grinding Wheel Topography , 1977 .

[22]  Shigeki Okuyama,et al.  Study on the Geometrical Accuracy in Surface Grinding. Thermal Deformation of Workpiece in Traverse Grinding. , 1993 .

[23]  D. C. Rapaport,et al.  The Art of Molecular Dynamics Simulation , 1997 .

[24]  W. B. Rowe,et al.  CHARACTERIZATION OF THE SIZE EFFECT IN GRINDING AND THE SLICED BREAD ANALOGY , 1997 .

[25]  Vladimir Gviniashvili,et al.  Fluid Flow and Pressure in the Grinding Wheel-Workpiece Interface , 2005 .

[26]  Hans Kurt Tönshoff,et al.  Informationssystem zur Gestaltung und Optimierung von Schleifprozessen , 1994 .

[27]  Ichiro Inasaki,et al.  Tribology of Abrasive Machining Processes , 2004 .

[28]  R. Krishnamurthy,et al.  Intelligent estimation of burning limits to aid in cylindrical grinding cycle planning , 2001 .

[29]  N. Cook,et al.  The Wear of Grinding Wheels: Part 1—Attritious Wear , 1971 .

[30]  Tien-Chien Jen,et al.  Coupled heat transfer to workpiece, wheel and fluid in grinding, and the occurrence of workpiece burn , 1991 .

[31]  J. C. Jaeger,et al.  Conduction of Heat in Solids , 1952 .

[32]  Zhijian Pei,et al.  Finite element analysis for grinding and lapping of wire-sawn silicon wafers , 2002 .

[33]  C. Heinzel,et al.  Modeling of Surface Generation in Contour Grinding of Optical Molds , 2006 .

[34]  Tao Chen,et al.  Predicting grinding burn using artificial neural networks , 1997, J. Intell. Manuf..

[35]  K. Li,et al.  Modelling of ceramic grinding processes Part I. Number of cutting points and grinding forces per grit , 1997 .

[36]  Reinhard Lowin,et al.  Schleiftemperaturen und ihre Auswirkungen im Werkstück , 1980 .

[37]  Steven Y. Liang,et al.  Analysis of Wheel Topography and Grit Force for Grinding Process Modeling , 2003 .

[38]  Paweł Lajmert,et al.  An Intelligent Supervision System for Cylindrical Traverse Grinding , 2005 .

[39]  Stephen Malkin,et al.  Grinding Technology: Theory and Applications of Machining with Abrasives , 1989 .

[40]  C. Guo,et al.  Heat Flux Distribution and Energy Partition in Creep-Feed Grinding , 1997 .

[41]  G. J. Trmal,et al.  An expert system for grinding process optimisation , 1992 .

[42]  Adrienne S. Lavine,et al.  An exact solution for surface temperature in down grinding , 2000 .

[43]  Srinivasan Chandrasekar,et al.  Theoretical analysis of heat partition and temperatures in grinding , 1998 .

[44]  Liangchi Zhang,et al.  Applied mechanics in grinding. Part 7: residual stresses induced by the full coupling of mechanical deformation, thermal deformation and phase transformation , 1999 .

[45]  W. B. Rowe,et al.  A Simplified Approach to Control of Thermal Damage in Grinding , 1996 .

[46]  Ichiro Inasaki,et al.  Grinding Monitoring System Based on Power and Acoustic Emission Sensors , 2000 .

[47]  J. E. Mayer,et al.  Model of Grinding Thermal Damage for Precision Gear Materials , 1999 .

[48]  N. Chandrasekaran,et al.  Effect of tool geometry in nanometric cutting: a molecular dynamics simulation approach , 1998 .

[49]  Said Jahanmir,et al.  Application of Lubrication Theory to Fluid Flow in Grinding: Part I—Flow Between Smooth Surfaces , 2001 .

[50]  Xun Chen,et al.  Analysis and simulation of the grinding process. Part II: Mechanics of grinding , 1996 .

[51]  Ichiro Inasaki,et al.  Intelligent Data Base for Grinding Operations , 1993 .

[52]  Ming-Kuen Chen,et al.  Neural network modelling and multiobjective optimization of creep feed grinding of superalloys , 1992 .

[53]  Holian,et al.  Plasticity induced by shock waves in nonequilibrium molecular-dynamics simulations , 1998, Science.

[54]  S. Liang,et al.  Predictive modeling of surface roughness in grinding , 2003 .

[55]  T. Jin,et al.  Burn threshold of high-carbon steel in high-efficiency deep grinding , 2002 .

[56]  Stephen Malkin,et al.  Experimental Measurement of Fluid Flow Through the Grinding Zone , 1992 .

[57]  Srinivasan Chandrasekar,et al.  Simulation of thermal stresses due to grinding , 2001 .

[58]  T. Warren Liao,et al.  Flexural strength of creep feed ground ceramics: general pattern, ductile-brittle transition and mlp modeling , 1998 .

[59]  Jae-Seob Kwak,et al.  Trouble diagnosis of the grinding process by using acoustic emission signals , 2001 .

[60]  N. R. DesRuisseaux Thermal aspects of grinding processes , 1970 .

[61]  Jacques Peters Contribution of CIRP Research to Industrial Problem in Grinding , 1984 .

[62]  M. Peters Computational Statistical Mechanics. Studies in Modern Thermodynamics 11: By WM. G. HOOVER. Elsevier, New York (1991). ISBN 0-444-88192-1; 313 pp. + contents. , 1992 .

[63]  H. Tsai,et al.  Investigation of the transient thermal deflection and stresses of the workpiece in surface grinding with the application of a cryogenic magnetic chuck , 1998 .

[64]  C. Heinzel,et al.  Methoden zur Untersuchung und Optimierung der Kühlschmierung beim Schleifen , 1999 .

[65]  S. Malkin,et al.  Analysis of Fluid Flow through the Grinding Zone , 1992 .

[66]  Ichiro Inasaki,et al.  Molecular Dynamics Simulation for Abrasive Processes , 1994 .

[67]  Igor Grabec,et al.  Characterization of the grinding process by acoustic emission , 2000 .

[68]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[69]  Soundar Kumara,et al.  Fuzzy logic and neural networks for design of process parameters: A grinding process application , 1998 .

[70]  S. Malkin,et al.  Energy Partition to the Workpiece for Grinding with Aluminum Oxide and CBN Abrasive Wheels , 1995 .

[71]  A. Lavine,et al.  Thermal Aspects of Grinding: Heat Transfer to Workpiece, Wheel, and Fluid , 1991 .

[72]  Günter Kassen Beschreibung der elementaren Kinematik des Schleifvorganges , 1969 .

[73]  Li Yan,et al.  Applications of artificial intelligence in grinding , 1994 .

[74]  R. D. Zerkle,et al.  Thermal Analysis of the Grinding Process , 1970 .

[75]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1992, Math. Control. Signals Syst..

[76]  Peter Willett,et al.  Neural network detection of grinding burn from acoustic emission , 2001 .

[77]  Hiroaki Tanaka,et al.  Structure of Micromachined Surface Simulated by Molecular Dynamics Analysis , 1994 .

[78]  Georg Osterhaus Verfahrensübergreifende Simulation und Auslegung von Schleifprozessen , 1994 .

[79]  A.G. Mamalis,et al.  Development of an Expert System of Diamond Grinding of Superhard Polycrystalline Materials Considering Grinding Wheel Relief , 2001 .

[80]  Christopher J. Evans,et al.  High Speed Grinding of Silicon Nitride With Electroplated Diamond Wheels, Part 2: Wheel Topography and Grinding Mechanisms , 2000 .

[81]  E. Brinksmeier,et al.  Characterization of Dressing Processes by Determination of the Collision Number of the Abrasive Grits , 1995 .

[82]  T.M.A. Maksoud,et al.  Applications of Artificial Intelligence to Grinding Operations via Neural Networks , 2003 .

[83]  John A. Williams,et al.  The generation of wear surfaces by the interaction of parallel grooves , 1992 .

[84]  K. K. Hong,et al.  An inverse analysis for the heat conduction during a grinding process , 2000 .

[85]  John Moody,et al.  Fast Learning in Networks of Locally-Tuned Processing Units , 1989, Neural Computation.

[86]  Klaus Weinert,et al.  Kompensation der prozessbedingten Deformation beim Werkzeugschleifen , 2003 .

[87]  K. Maekawa,et al.  Friction and tool wear in nano-scale machining—a molecular dynamics approach , 1995 .

[88]  C. Czenkusch,et al.  Modelling and optimization of grinding processes , 1998, J. Intell. Manuf..

[89]  A. Torrance,et al.  A comparison of two models to predict grinding forces from wheel surface topography , 2000 .

[90]  W. Rowe,et al.  Experimental Investigation of Heat Transfer in Grinding , 1995 .

[91]  Bertil N. Colding,et al.  A wear relationship for turning, milling and grinding : machining economics , 1959 .

[92]  S. Malkin,et al.  Optimization of Continuous Dress Creep-Feed Form Grinding Process , 2003 .

[93]  F. Klocke,et al.  Coolant Induced Forces in CBN High Speed Grinding with Shoe Nozzles , 2000 .

[94]  C. C. Chang,et al.  On the Mechanism of Fluid Transport Across the Grinding Zone , 1996 .

[95]  Bogdan Kruszyński,et al.  Forces in Generating Gear Grinding-Theoretical and Experimental Approach , 1998 .

[96]  Elijah Kannatey-Asibu,et al.  Analysis of Fluid Flow Under a Grinding Wheel , 1991 .

[97]  Yan Li,et al.  An Intelligent Multiagent Approach for Selection of Grinding Conditions , 1997 .

[98]  Ichiro Inasaki,et al.  Sensor Fusion for Monitoring and Controlling Grinding Processes , 1999 .

[99]  Ichiro Inasaki Grinding Process Simulation Based on the Wheel Topography Measurement , 1996 .

[100]  Hans Ernst,et al.  Fundamental Aspects of Metal Cutting and Cutting Fluid Action , 1951 .

[101]  Jan C. Aurich,et al.  Development of a Superabrasive Grinding Wheel With Defined Grain Structure Using Kinematic Simulation , 2003 .

[102]  Abraham Nitzan,et al.  Surface science lettersDynamics of tip-substrate interactions in atomic force microscopy☆ , 1989 .

[103]  G. Warnecke,et al.  Optimization of the Dynamic Behavior of Grinding Wheels for Grinding of Hard and Brittle Materials Using the Finite Element Method , 1999 .

[104]  Yung C. Shin,et al.  Intelligent optimization of grinding processes using fuzzy logic , 1998 .

[105]  Igor Grabec,et al.  Synergetics of Measurement, Prediction and Control , 1997 .

[106]  Thai Nguyen,et al.  Modelling of the mist formation in a segmented grinding wheel system , 2005 .

[107]  P. Oxley,et al.  An explanation of the different regimes of friction and wear using asperity deformation models , 1979 .

[108]  Xun Chen,et al.  Analysis and simulation of the grinding process. Part I: Generation of the grinding wheel surface , 1996 .

[109]  Ranga Komanduri,et al.  MD simulation of indentation and scratching of single crystal aluminum , 2000 .

[110]  A. Boyle,et al.  Avoidance of Thermal Damage in Grinding and Prediction of the Damage Threshold , 1988 .

[111]  I. Inasaki,et al.  Effects of Fluids on the Surface Generation in Material Removal Processes: –Molecular Dynamics Simulation– , 2006 .

[112]  Hans Kurt Tönshoff,et al.  Abrasive Machining in the Future , 1993 .

[113]  P. V. Makarov,et al.  Simulation of elastic–plastic deformation and fracture of materials at micro-, meso- and macrolevels , 2001 .

[114]  L. Zhou,et al.  220 Molecular Dynamics Simulation of Material Removal Mechanism beyond Propagation Speed of Plastic Wave , 2003 .

[115]  K. Weinert,et al.  Simulation of Tool-Grinding with Finite Element Method , 2000 .

[116]  Fritz Klocke,et al.  A New Method for Chatter Detection in Grinding , 1999 .

[117]  T. Warren Liao,et al.  A neural network approach for grinding processes: Modelling and optimization , 1994 .

[118]  Ichiro Inasaki,et al.  A Neural Network Approach to the Decision-Making Process for Grinding Operations , 1992 .

[119]  E. M. Kopalinsky,et al.  A new approach to calculating the workpiece temperature distributions in grinding , 1984 .

[120]  K. V. Ramana,et al.  Automated manufacturability assessment of rotational parts by grinding , 2004 .

[121]  W. B. Rowe,et al.  An Advance in the Modelling of Thermal Effects in the Grinding Process , 1991 .

[122]  Mofid Mahdi,et al.  Applied mechanics in grinding—IV. The mechanism of grinding induced phase transformation , 1995 .

[123]  A. Lavine A Simple Model for Convective Cooling During the Grinding Process , 1988 .

[124]  W. Brian Rowe,et al.  Thermal analysis of high efficiency deep grinding , 2001 .

[125]  Y Qin,et al.  Computer simulation of a workpiece temperature field during the grinding process , 2003 .

[126]  I. Inasaki,et al.  Investigation of Surface Integrity by Molecular Dynamics Simulation , 1995 .

[127]  Steven C. Fawcett,et al.  Influence of wheel speed on surface finish and chip geometry in precision contour grinding , 1992 .

[128]  Yung C. Shin,et al.  Intelligent Model-based Optimization of the Surface Grinding Process for Heat-Treated 4140 Steel Alloys With Aluminum Oxide Grinding Wheels , 2003 .

[129]  Philip Koshy,et al.  Surface Generation with Engineered Diamond Grinding Wheels: Insights from Simulation , 2003 .

[130]  B. Karpuschewski,et al.  Simulation der Randzonenbeeinflussung beim Schleifen , 1993 .

[131]  Kuang-Hua Fuh,et al.  Force modeling and forecasting in creep feed grinding using improved bp neural network , 1997 .

[132]  Adrienne S. Lavine,et al.  Thermal aspects of grinding : the effect of heat generation at the shear planes , 1991 .

[133]  Stephen Malkin,et al.  Energy Partition and Cooling During Grinding , 2000 .

[134]  T. Jin,et al.  Three Dimensional Finite Element Simulation of Transient Heat Transfer in High Efficiency Deep Grinding , 2004 .

[135]  Zhijian Pei,et al.  Application of Fuzzy Adaptive Networks in Manufacturing: Waviness Removal in Grinding of Wire-Sawn Silicon Wafers , 2003 .

[136]  Konstantinos Salonitis,et al.  An Analytical, Numerical, and Experimental Approach to Grind Hardening , 2005 .

[137]  Ernst Saljé Gesetzmäßigkeiten und Kennzahlen beim Schleifen , 1952 .

[138]  Xun Chen,et al.  Analysis and simulation of the grinding process. Part IV: Effects of wheel wear , 1998 .

[139]  W. Brian Rowe,et al.  Temperatures in deep grinding of finite workpieces , 2002 .

[140]  Paul Shore,et al.  A Standard Grinding Wheel Assessment Method to Support a Sophisticated Grinding Knowledge Based System , 2004 .

[141]  F. W. Taylor The Art of Cutting Metals , 1907 .

[142]  Yadong Gong,et al.  The simulation of grinding wheels and ground surface roughness based on virtual reality technology , 2002 .

[143]  Fritz Klocke,et al.  Entwicklungen zu einem ganzheitlichen Prozessmodell für das Hochleistungs-Außenrund-Formschleifen , 2001 .

[144]  Patrick van der Smagt Minimisation methods for training feedforward neural networks , 1994, Neural Networks.

[145]  W. König,et al.  A Numerical Method to Describe the Kinematics of Grinding , 1982 .

[146]  G. Q. Cai,et al.  Analytical thermal models of oblique moving heat source for deep grinding and cutting , 2001 .

[147]  T.R.A. Pearce,et al.  Predicting the occurrence of grind hardening in cubic boron nitride grinding of crankshaft steel , 2004 .

[148]  Fengfeng Xi,et al.  Modeling and predicting surface roughness of the grinding process , 2002 .

[149]  Yuji Furukawa,et al.  Analysis of Workpiece Temperature and Grinding Burn in Creep Feed Grinding , 1985 .

[150]  W B Rowe,et al.  Estimation of the convection heat transfer coefficient of coolant within the grinding zone , 2003 .

[151]  Liangchi Zhang Grindability of some metallic and ceramic materials in CFG regimes , 1994 .

[152]  Shigeki Okuyama,et al.  Cooling action of grinding fluid in shallow grinding , 1993 .

[153]  Hans Kurt Tönshoff,et al.  Process Monitoring in Grinding , 2002 .

[154]  Kawai,et al.  Large-scale elastic-plastic indentation simulations via nonequilibrium molecular dynamics. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[155]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[156]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[157]  Tien-Chien Jen,et al.  Thermal aspects of grinding with CBN wheels , 1989 .

[158]  Thomas G. Bifano,et al.  Specific grinding energy as an in-process control variable for ductile-regime grinding , 1991 .

[159]  E. J. Salisbury,et al.  A Three-Dimensional Model for the Surface Texture in Surface Grinding, Part 2: Grinding Wheel Surface Texture Model , 2001 .

[160]  D. Wolf,et al.  Atomistic Concepts for Simulation of Grain Boundary Fracture , 1991 .

[161]  Abraham Nitzan,et al.  Dynamics of tip-substrate interactions in atomic force microscopy☆ , 1989 .

[162]  Hans Kurt Tönshoff,et al.  CBN grinding with small wheels , 1995 .

[163]  Ichiro Inasaki,et al.  Modelling and Simulation of Grinding Processes , 1992 .

[164]  Tien-Chien Jen,et al.  A Variable Heat Flux Model of Heat Transfer in Grinding: Model Development , 1995 .

[165]  Timothy Masters,et al.  Advanced algorithms for neural networks: a C++ sourcebook , 1995 .

[166]  Adrienne S. Lavine,et al.  Grinding Process Size Effect and Kinematics Numerical Analysis , 2000 .

[167]  Adrienne S. Lavine,et al.  Thermal Aspects of Grinding: The Case of Upgrinding , 2000 .

[168]  Hiroaki Tanaka,et al.  An Atomistic Analysis of Nanometric Chip Removal as Affected by Tool-Work Interaction in Diamond Turning , 1991 .

[169]  M. Baskes,et al.  Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals , 1984 .

[170]  Peter V. Coveney,et al.  From Molecular Dynamics to Dissipative Particle Dynamics , 1999 .