High-efficiency carrier multiplication through direct photogeneration of multi-excitons via virtual single-exciton states

[1]  R. Schaller,et al.  Effect of electronic structure on carrier multiplication efficiency: Comparative study of PbSe and CdSe nanocrystals , 2005 .

[2]  M. Beard,et al.  Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. , 2005, Nano letters.

[3]  Christopher B. Murray,et al.  Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites , 2005 .

[4]  V. Klimov,et al.  Structure of excited-state transitions of individual semiconductor nanocrystals probed by photoluminescence excitation spectroscopy. , 2004, Physical review letters.

[5]  R. Schaller,et al.  High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. , 2004, Physical review letters.

[6]  A. Zunger,et al.  Direct carrier multiplication due to inverse Auger scattering in CdSe quantum dots , 2004 .

[7]  J. Hollingsworth,et al.  Multiexcitons confined within a subexcitonic volume: Spectroscopic and dynamical signatures of neutral and charged biexcitons in ultrasmall semiconductor nanocrystals , 2003, cond-mat/0309712.

[8]  Victor I. Klimov,et al.  Multiple temperature regimes of radiative decay in CdSe nanocrystal quantum dots: Intrinsic limits to the dark-exciton lifetime , 2003 .

[9]  Frank W. Wise,et al.  Optical Properties of Colloidal PbSe Nanocrystals , 2002 .

[10]  P. Guyot-Sionnest,et al.  Interband and Intraband Optical Studies of PbSe Colloidal Quantum Dots , 2002 .

[11]  Christopher B. Murray,et al.  Colloidal synthesis of nanocrystals and nanocrystal superlattices , 2001, IBM J. Res. Dev..

[12]  Michael Grätzel,et al.  Photoelectrochemical cells , 2001, Nature.

[13]  Victor I. Klimov,et al.  Optical Nonlinearities and Ultrafast Carrier Dynamics in Semiconductor Nanocrystals , 2000 .

[14]  Klimov,et al.  Quantization of multiparticle auger rates in semiconductor quantum dots , 2000, Science.

[15]  Jürgen H. Werner,et al.  Solar cell efficiency and carrier multiplication in Si1−xGex alloys , 1998 .

[16]  Duncan W. McBranch,et al.  Femtosecond 1P-to-1S electron relaxation in strongly confined semiconductor nanocrystals , 1998 .

[17]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[18]  Image Enhancement with Polymer Grid Triode Arrays , 1995, Science.

[19]  Ries,et al.  Luminescence and efficiency of an ideal photovoltaic cell with charge carrier multiplication. , 1995, Physical review. B, Condensed matter.

[20]  Jürgen H. Werner,et al.  Quantum efficiencies exceeding unity due to impact ionization in silicon solar cells , 1993 .

[21]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[22]  P. Landsberg,et al.  Band‐band impact ionization and solar cell efficiency , 1993 .

[23]  P. Landsberg,et al.  Recombination in semiconductors , 2003, Nature.

[24]  E. Hanamura,et al.  Anisotropic excitonic molecules in CdS and CdSe , 1973 .