Cellular Associative Neural Networks for Pattern Recognition

A common factor of many of the problems in shape recognition and, in extension, in image interpretation is the large dimensionality of the search space. One way to overcome this situation is to partition the problem into smaller ones and combine the local solutions towards global interpretations. Using this approach, the system presented in this thesis provides a novel combination of the descriptional power of symbolic representations of image data, the parallel and distributed processing model of cellular automata and the speed and robustness of connectionist symbolic processing. The aim of the system is to transform initial symbolic descriptions of patterns to the corresponding object level descriptions in order to identify patterns in complex and noisy scenes. The scene is represented by the configuration of a cellular array. At the initial level, the states of the cells in the array represent local and elementary features of the objects. At every iteration, these local features are ‘connected’ together forming higher level features, ultimately forming the object level description. An associative symbolic processing element is placed in each cell of the array while the exchange of information and the state transitions that take place are controlled by the rules of a global pattern description grammar. These rules are produced using a learning algorithm which is based on a hierarchical structural analysis of the patterns. Efficient management of these rules in terms of speed and storage capacity is provided by the underlying neural associative symbolic processing engine of the system (AURA) which also facilitates its operation with increased tolerance in order to overcome problems caused by noise and uncertainty in the data. In order to present the basic characteristics of the architecture the system is tested in the task of recognising simple geometric shapes. The behaviour of the learning algorithm and the influence of various parameters defining the operation of the system are examined in these experimental sessions and a prominent characteristic is shown to be the robustness to noise. Yet from this initial stage, the current architecture demonstrates the advantages arising from the combination of cellular, neural and symbolic processing and also shows how a simple principle can provide an efficient learning algorithm.

[1]  Dan I. Moldovan,et al.  Semantic Network Array Processor and Its Applications to Image Understanding , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Mariusz Flasinski On the parsing of deterministic graph languages for syntactic pattern recognition , 1993, Pattern Recognit..

[3]  Craig W. Reynolds Flocks, herds, and schools: a distributed behavioral model , 1987, SIGGRAPH.

[4]  Jim Austin,et al.  A neural relaxation technique for chemical graph matching , 1997 .

[5]  A. L. Shipman Implementing relaxation Labelling with Neural Networks , 1987, Aust. Comput. J..

[6]  H. C. LONGUET-HIGGINS,et al.  Non-Holographic Associative Memory , 1969, Nature.

[7]  Robert M. Haralick,et al.  Glossary of computer vision terms , 1990, Pattern Recognit..

[8]  Jim Austin The cellular neural network associative processor, C-NNAP , 1995 .

[9]  Lawrence D. Jackel,et al.  Backpropagation Applied to Handwritten Zip Code Recognition , 1989, Neural Computation.

[10]  Stephen Grossberg,et al.  The ART of adaptive pattern recognition by a self-organizing neural network , 1988, Computer.

[11]  Enrique Vidal,et al.  What Is the Search Space of the Regular Inference? , 1994, ICGI.

[12]  Lokendra Shastri,et al.  Rules and Variables in Neural Nets , 1991, Neural Computation.

[13]  Jim Austin,et al.  Cellular associative neural networks for image interpretation , 1997 .

[14]  N. Margolus Physics-like models of computation☆ , 1984 .

[15]  Georg Ferber,et al.  Classifying and validating intermittent EEG patterns with syntactic methods , 1986, Pattern Recognit..

[16]  Jean Paul Haton,et al.  A Syntactic Approach for Handwritten Mathematical Formula Recognition , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Ron Sun,et al.  Computational Architectures Integrating Neural And Symbolic Processes , 1994 .

[18]  Yizhak Idan,et al.  Pattern recognition by cooperating neural networks , 1992, Optics & Photonics.

[19]  E. Mark Gold,et al.  Language Identification in the Limit , 1967, Inf. Control..

[20]  Alan C. Shaw,et al.  Parsing of Graph-Representable Pictures , 1970, JACM.

[21]  Amita Pathak,et al.  Syntactic recognition of skeletal maturity , 1984, Pattern Recognit. Lett..

[22]  N. Packard Lattice models for solidification and aggregation , 1985 .

[23]  King-Sun Fu,et al.  A graph distance measure for image analysis , 1984, IEEE Transactions on Systems, Man, and Cybernetics.

[24]  Erkki Mäkinen Remarks on the Structural Grammatical Inference Problem for Context-Free Grammars , 1992, Inf. Process. Lett..

[25]  Karl Tombre,et al.  Structural and Syntactic Methods in Line Drawing Analysis: To Which Extent Do They Work? , 1996, SSPR.

[26]  Oscar H. Ibarra,et al.  Fast Parallel Language Recognition by Cellular Automata , 1985, Theor. Comput. Sci..

[27]  E. Berlekamp,et al.  Winning Ways for Your Mathematical Plays , 1983 .

[28]  Michael J. Fischer,et al.  The String-to-String Correction Problem , 1974, JACM.

[29]  Teuvo Kohonen,et al.  Self-Organization and Associative Memory, Third Edition , 1989, Springer Series in Information Sciences.

[30]  Allen R. Hanson,et al.  The image understanding architecture , 1987, International Journal of Computer Vision.

[31]  King-Sun Fu,et al.  An Image Understanding System Using Attributed Symbolic Representation and Inexact Graph-Matching , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Jim Austin,et al.  A Cellular Neural Associative Array for Symbolic Vision , 1998, Hybrid Neural Systems.

[33]  Robert M. Haralick,et al.  MATCHING RELATIONAL STRUCTURES USING DISCRETE RELAXATION , 1990 .

[34]  Anil K. Jain,et al.  Artificial Neural Networks: A Tutorial , 1996, Computer.

[35]  P.S.P. Wang,et al.  AN ALGORITHM FOR INFERRING CONTEXT-FREE ARRAY GRAMMARS , 1990 .

[36]  Yasubumi Sakakibara,et al.  Learning context-free grammars from structural data in polynomial time , 1988, COLT '88.

[37]  Jim Austin,et al.  Distributed associative memory for use in scene analysis , 1987, Image Vis. Comput..

[38]  Lin-Bao Yang,et al.  Cellular neural networks: theory , 1988 .

[39]  Zvi Galil,et al.  An Improved Algorithm for Approximate String Matching , 1989, SIAM J. Comput..

[40]  Roger Mohr A General Purpose Line Drawing Analysis System , 1988 .

[41]  Jim Austin,et al.  Neural associative memories for molecular databases , 1996 .

[42]  George K. Papakonstantinou,et al.  An attribute grammar for QRS detection , 1986, Pattern Recognit..

[43]  Horst Bunke,et al.  Applications of approximate string matching to 2D shape recognition , 1993, Pattern Recognit..

[44]  Thomas Jackson,et al.  Neural Computing - An Introduction , 1990 .

[45]  Horst Bunke Attributed Programmed Graph Grammars and Their Application to Schematic Diagram Interpretation , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[46]  Justin Zobel,et al.  Phonetic string matching: lessons from information retrieval , 1996, SIGIR '96.

[47]  Horst Bunke,et al.  HYBRID PATTERN RECOGNITION METHODS , 1990 .

[48]  Steven L. Tanimoto,et al.  Architectures and algorithms for iconic-to-symbolic transformations , 1990, Pattern Recognit..

[49]  S. Wolfram Statistical mechanics of cellular automata , 1983 .

[50]  K. Culík,et al.  Computation theoretic aspects of cellular automata , 1990 .

[51]  Yiannis Aloimonos,et al.  Vision and action , 1995, Image Vis. Comput..

[52]  Jim Austin Parallel Distributed Computation , 1992 .

[53]  N. Packard,et al.  Extracting cellular automaton rules directly from experimental data , 1991 .

[54]  Horst Bunke Structural and Syntactic Pattern Recognition , 1993, Handbook of Pattern Recognition and Computer Vision.

[55]  Tommaso Toffoli,et al.  Cellular automata mechanics. , 1977 .

[56]  Vladimir Cherkassky,et al.  Linear Algebra Approach to Neural Associative Memories and Noise Performance of Neural Classifiers , 1991, IEEE Trans. Computers.

[57]  R. C. Thomas,et al.  Computer Vision: A First Course , 1988 .

[58]  Esko Ukkonen,et al.  Algorithms for Approximate String Matching , 1985, Inf. Control..

[59]  Alberto Sanfeliu,et al.  MATCHING TREE STRUCTURES , 1990 .

[60]  Nigel M. Allinson,et al.  CART - A cellular automata research tool , 1992, Microprocess. Microsystems.

[61]  Pentti Kanerva,et al.  Sparse Distributed Memory , 1988 .

[62]  K. Kaneko Period-Doubling of Kink-Antikink Patterns, Quasiperiodicity in Antiferro-Like Structures and Spatial Intermittency in Coupled Logistic Lattice*) -- Towards a Prelude of a "Field Theory of Chaos"-- , 1984 .

[63]  Gian Antonio Mian,et al.  On the application of geometrical form description techniques to automatic key-section recognition , 1993, Pattern Recognit..

[64]  James L. McClelland,et al.  Finite State Automata and Simple Recurrent Networks , 1989, Neural Computation.

[65]  Isak Gath,et al.  Syntactic pattern recognition applied to sleep EEG staging , 1989, Pattern Recognit. Lett..

[66]  Tsuyoshi Yamamoto,et al.  A new parsing scheme for plex grammars , 1990, Pattern Recognit..

[67]  Wentian Li,et al.  Transition phenomena in cellular automata rule space , 1991 .

[68]  G. Grassi,et al.  A new approach to design cellular neural networks for associative memories , 1997 .

[69]  Jim Austin,et al.  Cellular Associative Symbolic Processing for Pattern Recognition , 1998, MFCS Workshop on Grammar Systems.

[70]  Jim Austin A review of RAM based neural networks , 1994, Proceedings of the Fourth International Conference on Microelectronics for Neural Networks and Fuzzy Systems.

[71]  Azriel Rosenfeld,et al.  Image processing on MPP: 1 , 1982, Pattern Recognit..

[72]  Stefen Hui,et al.  Learning and Forgetting in Generalized Brain-state-in-a-box (BSB) Neural Associative Memories , 1996, Neural Networks.

[73]  Eiichi Tanaka,et al.  Theoretical aspects of syntactic pattern recognition , 1995, Pattern Recognit..

[74]  Jim Austin,et al.  A cellular system for pattern recognition using associative neural networks , 1998, 1998 Fifth IEEE International Workshop on Cellular Neural Networks and their Applications. Proceedings (Cat. No.98TH8359).

[75]  L. W. Tucker,et al.  Architecture and applications of the Connection Machine , 1988, Computer.

[76]  Julian R. Ullmann,et al.  An Algorithm for Subgraph Isomorphism , 1976, J. ACM.

[77]  Kenneth E. Batcher,et al.  Design of a Massively Parallel Processor , 1980, IEEE Transactions on Computers.

[78]  Adrian A. Low Introductory Computer Vision and Image Processing , 1991 .

[79]  János Csirik,et al.  An Improved Algorithm for Computing the Edit Distance of Run-Length Coded Strings , 1995, Inf. Process. Lett..

[80]  Maurice Milgram,et al.  New and efficient cellular algorithms for image processing , 1992, CVGIP Image Underst..

[81]  Ronald L. Greene,et al.  Connectionist Hashed Associative Memory , 1991, Artif. Intell..

[82]  Stephen Wolfram,et al.  Universality and complexity in cellular automata , 1983 .

[83]  Klaus Sutner Classifying circular cellular automata , 1991 .

[84]  Yakov I. Fet,et al.  Vertical Processing Systems: A Survey , 1995, IEEE Micro.

[85]  A. Krikelis,et al.  Associative processing and processors , 1994, Computer.

[86]  Mineichi Kudo,et al.  Efficient regular grammatical inference techniques by the use of partial similarities and their logical relationships , 1988, Pattern Recognit..

[87]  Kunihiko Fukushima,et al.  A neural network for visual pattern recognition , 1988, Computer.

[88]  Timo Knuutila,et al.  The Inference of Tree Languages from Finite Samples: An Algebraic Approach , 1994, Theor. Comput. Sci..

[89]  Jim Austin Grey Scale N-Tulpe Processing , 1988, Pattern Recognition.

[90]  Kunihiko Fukushima,et al.  Neocognitron: A hierarchical neural network capable of visual pattern recognition , 1988, Neural Networks.

[91]  Alberto Sanfeliu,et al.  A Hybrid Connectionist-Symbolic Approach to Regular Grammatical Inference Based on Neural Learning and Hierarchical Clustering , 1994, ICGI.

[92]  Jay Earley,et al.  An efficient context-free parsing algorithm , 1970, Commun. ACM.

[93]  Taylor L. Booth,et al.  Grammatical Inference: Introduction and Survey-Part I , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[94]  Enrique Vidal,et al.  Grammatical Inference: An Introduction Survey , 1994, ICGI.

[95]  J. R. Cowell Syntactic pattern recognizer for vehicle identification numbers , 1995, Image Vis. Comput..

[96]  Giovanni Seni,et al.  Generalizing edit distance to incorporate domain information: Handwritten text recognition as a case study , 1996, Pattern Recognit..

[97]  Tommaso Toffoli,et al.  Cellular Automata Machines , 1987, Complex Syst..

[98]  King-Sun Fu,et al.  A Syntactic Approach to Seismic Pattern Recognition , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[99]  King-Sun Fu,et al.  Parallel Parsing Algorithms and VLSI Implementations for Syntactic Pattern Recognition , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[100]  DeLiang Wang,et al.  Pattern recognition: neural networks in perspective , 1993, IEEE Expert.

[101]  Jim Austin,et al.  A neural architecture for fast rule matching , 1995, Proceedings 1995 Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems.

[102]  Jim Austin,et al.  Matching performance of binary correlation matrix memories , 1997, Neural Networks.

[103]  Gian Antonio Mian,et al.  On the application of geometrical form description techniques to automatic key-sections recognition , 1992, [1992] Proceedings. 11th IAPR International Conference on Pattern Recognition.

[104]  Michael G. Thomason,et al.  Syntactic Pattern Recognition, An Introduction , 1978, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[105]  S. Wolfram Computation theory of cellular automata , 1984 .

[106]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[107]  Jerome Feder,et al.  Plex languages , 1971, Inf. Sci..

[108]  J. D. Victor What can automaton theory tell us about the brain , 1990 .

[109]  Hugo de Garis,et al.  CoDi-1Bit: A Simplified Cellular Automata Based Neuron Model , 1997, Artificial Evolution.

[110]  Emmanuel Skordalakis Syntactic ECG processing: A review , 1986, Pattern Recognit..

[111]  Dan I. Moldovan,et al.  SNAP: parallel processing applied to AI , 1992, Computer.

[112]  Charles P. Dolan,et al.  Tensor Product Production System: a Modular Architecture and Representation , 1989 .

[113]  Jim Austin,et al.  Image object labelling and classification using an associative memory , 1995 .

[114]  David Casasent,et al.  High capacity pattern recognition associative processors , 1992, Neural Networks.

[115]  Mitsuru Ikeda,et al.  Direct parsing , 1986, Pattern Recognit..

[116]  King-Sun Fu,et al.  A Tree System Approach for Fingerprint Pattern Recognition , 1976, IEEE Transactions on Computers.

[117]  Parimal Pal Chaudhuri,et al.  A Low-Cost High-Capacity Associative Memory Design Using Cellular Automata , 1995, IEEE Trans. Computers.

[118]  James H. Bradford Sequence Matching with Binary Codes , 1990, Inf. Process. Lett..

[119]  Teuvo Kohonen,et al.  Content-addressable memories , 1980 .

[120]  Robert J. Schalkoff,et al.  Image labelling: a neural network approach , 1988, Image Vis. Comput..

[121]  José-Miguel Benedí,et al.  Statistical Inductive Learning of Regular Formal Languages , 1994, ICGI.

[122]  Enrique Vidal,et al.  Computation of Normalized Edit Distance and Applications , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[123]  Erik L. Dagless,et al.  A Survey on Trust Management for Mobile Ad Hoc Networks , 2011, IEEE Communications Surveys & Tutorials.

[124]  Xinhua Zhuang,et al.  Designing Bidirectional Associative Memories with Optimal Stability , 1994, IEEE Trans. Syst. Man Cybern. Syst..

[125]  Roger Mohr,et al.  Mirabelle, a system for structural analysis of drawings , 1983, Pattern Recognit..

[126]  L. Rabiner,et al.  An introduction to hidden Markov models , 1986, IEEE ASSP Magazine.

[127]  James A. Anderson,et al.  Software for neural networks , 1988, CARN.

[128]  Karl-Erwin Großpietsch,et al.  Associative processors and memories: a survey , 1992, IEEE Micro.

[129]  Marvin Minsky,et al.  Computation : finite and infinite machines , 2016 .