Modified Separators with Ultrathin Graphite Coating Simultaneously Mitigate the Issues of Metal Dendrites and Lithium Polysulfides to Provide Stable Lithium–Sulfur Batteries

In this paper, we demonstrate a unique multifunctional separator prepared by sputtering a thin layer of graphite on top of a commercial polypropylene–polyethylene separator. This modified separator...

[1]  Li Lu,et al.  Deposition of thin δ-MnO2 functional layers on carbon foam/sulfur composites for synergistically inhibiting polysulfides shuttling and increasing sulfur utilization , 2019, Electrochimica Acta.

[2]  Jingze Li,et al.  Three-dimensional carbon material as stable host for dendrite-free lithium metal anodes , 2019, Electrochimica Acta.

[3]  Hong‐Jie Peng,et al.  Activating Inert Metallic Compounds for High-Rate Lithium-Sulfur Batteries Through In Situ Etching of Extrinsic Metal. , 2019, Angewandte Chemie.

[4]  Yaqin Huang,et al.  Ultralight polyethylenimine/porous carbon modified separator as an effective polysulfide-blocking barrier for lithium-sulfur battery , 2019, Electrochimica Acta.

[5]  Syed Ali Abbas,et al.  Mitigating Metal Dendrite Formation in Lithium-Sulfur Batteries via Morphology-Tunable Graphene Oxide Interfaces. , 2018, ACS applied materials & interfaces.

[6]  Rui Zhang,et al.  An Armored Mixed Conductor Interphase on a Dendrite‐Free Lithium‐Metal Anode , 2018, Advanced materials.

[7]  Jiayan Luo,et al.  Horizontal Centripetal Plating in the Patterned Voids of Li/Graphene Composites for Stable Lithium-Metal Anodes , 2018, Chem.

[8]  Jiaqi Huang,et al.  Dual‐Layered Film Protected Lithium Metal Anode to Enable Dendrite‐Free Lithium Deposition , 2018, Advanced materials.

[9]  Hong‐Jie Peng,et al.  Artificial Soft–Rigid Protective Layer for Dendrite‐Free Lithium Metal Anode , 2018 .

[10]  Syed Ali Abbas,et al.  Modified Separator Performing Dual Physical/Chemical Roles to Inhibit Polysulfide Shuttle Resulting in Ultrastable Li-S Batteries. , 2017, ACS nano.

[11]  Xiulin Fan,et al.  Reverse Microemulsion Synthesis of Sulfur/Graphene Composite for Lithium/Sulfur Batteries. , 2017, ACS nano.

[12]  Hui Wu,et al.  High performance lithium metal anode: Progress and prospects , 2017 .

[13]  Shaoming Huang,et al.  Polysulfide-Scission Reagents for the Suppression of the Shuttle Effect in Lithium-Sulfur Batteries. , 2017, ACS nano.

[14]  Ruopian Fang,et al.  Toward More Reliable Lithium-Sulfur Batteries: An All-Graphene Cathode Structure. , 2016, ACS nano.

[15]  J. Eckert,et al.  Improved cycling stability of lithium–sulfur batteries using a polypropylene-supported nitrogen-doped mesoporous carbon hybrid separator as polysulfide adsorbent , 2016 .

[16]  Aravindaraj G. Kannan,et al.  Effective Suppression of Dendritic Lithium Growth Using an Ultrathin Coating of Nitrogen and Sulfur Codoped Graphene Nanosheets on Polymer Separator for Lithium Metal Batteries. , 2015, ACS applied materials & interfaces.

[17]  Yue Zhou,et al.  High-Performance Lithium–Sulfur Batteries with a Cost-Effective Carbon Paper Electrode and High Sulfur-Loading , 2015 .

[18]  J. Eckert,et al.  Functional Mesoporous Carbon‐Coated Separator for Long‐Life, High‐Energy Lithium–Sulfur Batteries , 2015 .

[19]  Jung-Ki Park,et al.  Stabilizing effect of 2-(triphenylphosphoranylidene) succinic anhydride as electrolyte additive on the lithium metal of lithium metal secondary batteries , 2015 .

[20]  Shizhao Xiong,et al.  Polysulfide-containing Glyme-based Electrolytes for Lithium Sulfur Battery , 2015 .

[21]  Dong Jin Lee,et al.  A simple composite protective layer coating that enhances the cycling stability of lithium metal batteries , 2015 .

[22]  S. Koch,et al.  Homogeneous lithium electrodeposition with pyrrolidinium-based ionic liquid electrolytes. , 2015, ACS applied materials & interfaces.

[23]  Hong‐Jie Peng,et al.  Permselective graphene oxide membrane for highly stable and anti-self-discharge lithium-sulfur batteries. , 2015, ACS nano.

[24]  Liyi Shi,et al.  Self-assembly of PEI/SiO2 on polyethylene separators for Li-ion batteries with enhanced rate capability. , 2015, ACS applied materials & interfaces.

[25]  Xiao Liang,et al.  A highly efficient polysulfide mediator for lithium–sulfur batteries , 2015, Nature Communications.

[26]  M. Oschatz,et al.  Nanocasting hierarchical carbide-derived carbons in nanostructured opal assemblies for high-performance cathodes in lithium-sulfur batteries. , 2014, ACS nano.

[27]  Christopher J. Ellison,et al.  New battery strategies with a polymer/Al2O3 separator , 2014 .

[28]  Yang Liu,et al.  A highly ordered meso@microporous carbon-supported sulfur@smaller sulfur core-shell structured cathode for Li-S batteries. , 2014, ACS nano.

[29]  A. Manthiram,et al.  High-Performance Li-S Batteries with an Ultra-lightweight MWCNT-Coated Separator. , 2014, The journal of physical chemistry letters.

[30]  B. Liaw,et al.  A review of lithium deposition in lithium-ion and lithium metal secondary batteries , 2014 .

[31]  Lynden A. Archer,et al.  Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. , 2014, Journal of the American Chemical Society.

[32]  Fan Zhang,et al.  Sulfur-infiltrated graphene-based layered porous carbon cathodes for high-performance lithium-sulfur batteries. , 2014, ACS nano.

[33]  H. Althues,et al.  Reduced polysulfide shuttle in lithium–sulfur batteries using Nafion-based separators , 2014 .

[34]  Yang‐Kook Sun,et al.  Cycling characteristics of lithium metal batteries assembled with a surface modified lithium electrode , 2013 .

[35]  Jiulin Wang,et al.  Carbonyl‐β‐Cyclodextrin as a Novel Binder for Sulfur Composite Cathodes in Rechargeable Lithium Batteries , 2013 .

[36]  Hun‐Gi Jung,et al.  An Advanced Lithium‐Sulfur Battery , 2013 .

[37]  Dong‐Won Kim,et al.  Cycling Characteristics of Lithium Powder Polymer Batteries Assembled with Composite Gel Polymer Electrolytes and Lithium Powder Anode , 2013 .

[38]  Chunsheng Wang,et al.  Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries. , 2011, Nano letters.

[39]  Myung-Hyun Ryou,et al.  Mussel‐Inspired Polydopamine‐Treated Polyethylene Separators for High‐Power Li‐Ion Batteries , 2011, Advanced materials.

[40]  L. Archer,et al.  Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. , 2011, Angewandte Chemie.

[41]  Anton Van der Ven,et al.  Lithium Diffusion in Graphitic Carbon , 2010, 1108.0576.

[42]  Yuriy V. Mikhaylik,et al.  Li/S fundamental chemistry and application to high-performance rechargeable batteries , 2004 .

[43]  Yuriy V. Mikhaylik,et al.  Polysulfide Shuttle Study in the Li/S Battery System , 2004 .

[44]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[45]  Makoto Ue,et al.  Effect of vinylene carbonate as additive to electrolyte for lithium metal anode , 2004 .

[46]  Myung-Hyun Ryou,et al.  Study on dead-Li suppression mechanism of Li-hosting vapor-grown-carbon-nanofiber-based protective layer for Li metal anodes , 2019, Journal of Power Sources.

[47]  Xiaogang Sun,et al.  Carbon/Gelatin Microcapsules for Sulfur Cathode: A Micro-Reactor Suppressing “Shuttle Effect” , 2019, Journal of The Electrochemical Society.

[48]  Jiayan Luo,et al.  Bending‐Tolerant Anodes for Lithium‐Metal Batteries , 2018, Advanced materials.

[49]  H. Gasteiger,et al.  An Analysis Protocol for Three-Electrode Li-Ion Battery Impedance Spectra: Part I. Analysis of a High-Voltage Positive Electrode , 2017 .

[50]  Zhengyuan Tu,et al.  Nanoporous Polymer‐Ceramic Composite Electrolytes for Lithium Metal Batteries , 2014 .

[51]  Dong‐Won Kim,et al.  Improved Cycling Stability of Lithium Electrodes in Rechargeable Lithium Batteries , 2014 .

[52]  Jinghua Guo,et al.  Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. , 2011, Journal of the American Chemical Society.