Quasi-static free-boundary equilibrium of toroidal plasma with CEDRES++: Computational methods and applications

We present a comprehensive survey of the various computational methods in CEDRES++ for finding equilibria of toroidal plasma. Our focus is on free-boundary plasma equilib-ria, where either poloidal field coil currents or the temporal evolution of voltages in poloidal field circuit systems are given data. Centered around a piecewise linear finite element representation of the poloidal flux map, our approach allows in large parts the use of established numerical schemes. The coupling of a finite element method and a boundary element method gives consistent numerical solutions for equilibrium problems in unbounded domains. We formulate a new Newton method for the discretized non-linear problem to tackle the various non-linearities, including the free plasma boundary. The Newton method guarantees fast convergence and is the main building block for the inverse equilibrium problems that we can handle in CEDRES++ as well. The inverse problems aim at finding either poloidal field coil currents that ensure a desired shape and position of the plasma or at finding the evolution of the voltages in the poloidal field circuit systems that ensure a prescribed evolution of the plasma shape and position. We provide equilibrium simulations for the tokamaks ITER and WEST to illustrate the performance of CEDRES++ and its application areas.

[1]  R. Lüst,et al.  Axialsymmetrische magnetohydrodynamische Gleichgewichtskonfigurationen , 1957 .

[2]  Harold Grad,et al.  HYDROMAGNETIC EQUILIBRIA AND FORCE-FREE FIELDS , 1958 .

[3]  V. Shafranov On Magnetohydrodynamical Equilibrium Configurations , 1958 .

[4]  H. Grad TOROIDAL CONTAINMENT OF A PLASMA. , 1967 .

[5]  K. Lackner,et al.  Multipole tokamak equilibria , 1973 .

[6]  R. Glowinski,et al.  Analyse numerique du champ magnetique d'un alternateur par elements finis et sur-relaxation ponctuelle non lineaire , 1974 .

[7]  K. Lackner,et al.  Computation of ideal MHD equilibria , 1976 .

[8]  F. Hinton,et al.  Theory of plasma transport in toroidal confinement systems , 1976 .

[9]  F. J. Helton,et al.  MHD equilibrium in non-circular tokamaks with field-shaping coil systems , 1978 .

[10]  J. Manickam,et al.  Numerical determination of axisymmetric toroidal magnetohydrodynamic equilibria , 1979 .

[11]  S. Jardin,et al.  An iterative metric method for solving the inverse tokamak equilibrium problem , 1979 .

[12]  S. C. Jardin,et al.  Two‐dimensional transport of tokamak plasmas , 1979 .

[13]  L. Lao,et al.  Variational moment solutions to the Grad–Shafranov equation , 1981 .

[14]  Jacques Blum,et al.  The self-consistent equilibrium and diffusion code sced , 1981 .

[15]  J. L. Luxon,et al.  Magnetic analysis of non-circular cross-section tokamaks , 1982 .

[16]  H. Perrin,et al.  An analytic solution of the stationary MHD equations for a rotating toroidal plasma , 1984 .

[17]  Stephen C. Jardin,et al.  The Princeton spectral equilibrium code: PSEC , 1985 .

[18]  L. M. Degtyarev,et al.  An inverse variable technique in the MHD-equilibrium problem , 1985 .

[19]  L. Lao,et al.  Reconstruction of current profile parameters and plasma shapes in tokamaks , 1985 .

[20]  S. Jardin,et al.  Dynamic modeling of transport and positional control of tokamaks , 1986 .

[21]  Martin Costabel,et al.  Principles of boundary element methods , 1987 .

[22]  F. Troyon,et al.  Computation of MHD equilibria by a quasi-inverse finite hybrid element approach , 1987 .

[23]  Numerical simulation of the plasma equilibrium in a Tokamak , 1987 .

[24]  G. Tonetti,et al.  Tokamak equilibrium reconstruction using Faraday rotation measurements , 1988 .

[25]  Miloslav Feistauer,et al.  Finite element approximation of nonlinear elliptic problems with discontinuous coefficients , 1989 .

[26]  Jacques Blum Numerical simulation and optimal control in plasma physics : with applications to Tokamaks , 1989 .

[27]  L. L. Lao,et al.  Equilibrium analysis of current profiles in tokamaks , 1990 .

[28]  Martin Costabel,et al.  Coupling of finite and boundary element methods for an elastoplastic interface problem , 1990 .

[29]  S. P. Hirshman,et al.  Preconditioned descent algorithm for rapid calculations of magnetohydrodynamic equilibria , 1991 .

[30]  L. Degtyarev,et al.  Adaptive Mesh Computation of Magnetic Hydrodynamic Equilibrium , 1991 .

[31]  Jacobo Bielak,et al.  Symmetric finite element and boundary integral coupling methods for fluid-solid interaction , 1991 .

[32]  J. P. Goedbloed,et al.  Isoparametric Bicubic Hermite Elements for Solution of the Grad-Shafranov Equation , 1991 .

[33]  Ernst P. Stephan,et al.  Coupling of finite elements and boundary elements for some nonlinear interface problems , 1992 .

[34]  J. Spruck,et al.  Multiconstrained variational problems in magnetohydrodynamics: equilibrium and slow evolution , 1993 .

[35]  Gabriel N. Gatica,et al.  The Uncoupling of Boundary Integral and Finite Element Methods for Nonlinear Boundary Value Problems , 1995 .

[36]  Jonathan Richard Shewchuk,et al.  Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.

[37]  Dinesh Manocha,et al.  Applied Computational Geometry Towards Geometric Engineering , 1996, Lecture Notes in Computer Science.

[38]  J. P. Goedbloed,et al.  Stationary symmetric magnetohydrodynamic flows , 1997 .

[39]  R. Albanese,et al.  The linearized CREATE-L plasma response model for the control of current, position and shape in tokamaks , 1998 .

[40]  C. Schwab P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .

[41]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[42]  W. Park,et al.  Plasma simulation studies using multilevel physics models , 1999 .

[43]  P. McCarthy,et al.  The CLISTE Interpretive Equilibrium Code , 1999 .

[44]  J. Nédélec Acoustic and electromagnetic equations , 2001 .

[45]  W. Zwingmann,et al.  Equilibrium analysis of tokamak discharges with anisotropic pressure , 2001 .

[46]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[47]  Ralf Hiptmair,et al.  Coupling of Finite Elements and Boundary Elements in Electromagnetic Scattering , 2003, SIAM J. Numer. Anal..

[48]  Stefaan Poedts,et al.  Principles of Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas , 2004 .

[49]  J. Manickam,et al.  Numerical study of tokamak equilibria with arbitrary flow , 2004 .

[50]  B. Jüttler,et al.  Monotonicity-preserving interproximation of B-H -curves , 2006 .

[51]  Jin-Fa Lee,et al.  Solving electromagnetic problems using a novel symmetric FEM-BEM approach , 2006, IEEE Transactions on Magnetics.

[52]  G. Huysmans,et al.  MHD stability in X-point geometry: simulation of ELMs , 2007 .

[53]  Alfredo Pironti,et al.  Magnetic Control of Tokamak Plasmas , 2008 .

[54]  Steven P. Hirshman,et al.  Three-dimensional anisotropic pressure free boundary equilibria , 2009, Comput. Phys. Commun..

[55]  Matthew MacDonald,et al.  Shapes and Geometries , 1987 .

[56]  F. Imbeaux,et al.  The European Transport Solver , 2010, IEEE Transactions on Plasma Science.

[57]  Stephen C. Jardin,et al.  Computational Methods in Plasma Physics , 2010 .

[58]  V. Pustovitov Anisotropic pressure effects on plasma equilibrium in toroidal systems , 2010 .

[59]  Rony Keppens,et al.  Advanced Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas , 2010 .

[60]  E. Joffrin,et al.  The CRONOS suite of codes for integrated tokamak modelling , 2010 .

[61]  C. Schwab,et al.  Boundary Element Methods , 2010 .

[62]  Jens Markus Melenk,et al.  Optimal a priori estimates for higher order finite elements for elliptic interface problems , 2010 .

[63]  Sylvain Brémond,et al.  Feasibility study of an actively cooled tungsten divertor in Tore Supra for ITER technology testing , 2011 .

[64]  Sylvain Brémond,et al.  The CEDRES++ equilibrium code and its application to ITER, JT-60SA and Tore Supra , 2011 .

[65]  M. C. Delfour,et al.  Shapes and Geometries - Metrics, Analysis, Differential Calculus, and Optimization, Second Edition , 2011, Advances in design and control.

[66]  Blaise Faugeras,et al.  Reconstruction of the equilibrium of the plasma in a Tokamak and identification of the current density profile in real time , 2009, J. Comput. Phys..

[67]  M. Hole,et al.  EFIT tokamak equilibria with toroidal flow and anisotropic pressure using the two-temperature guiding-centre plasma , 2013, 1301.4714.

[68]  J. Lister,et al.  Self-consistent simulation of plasma scenarios for ITER using a combination of 1.5D transport codes and free-boundary equilibrium codes , 2013, 1310.8437.

[69]  Jet Efda Contributors,et al.  The European Integrated Tokamak Modelling (ITM) effort: achievements and first physics results , 2014 .

[70]  Optimal Control for Quasi-Static Evolution of Plasma Equilibrium in Tokamaks , 2014 .