Reaction mechanism, insensitivity and mechanical property of PTFE–Mg–W composites with magnesium particles surface modification
暂无分享,去创建一个
[1] P. Ramakrishna,et al. Effect of mechanical activation of high specific surface area aluminium with PTFE on composite solid propellant , 2016 .
[2] Jin-Xu Liu,et al. Investigation on reaction energy, mechanical behavior and impact insensitivity of W–PTFE–Al composites with different W percentage , 2016 .
[3] Q. Jiao,et al. Effect of Nano-Magnesium on the Thermal Decomposition of PTFE , 2014 .
[4] Mandal Asit Baran,et al. Water induced thermal decomposition of pyrotechnic mixtures – Thermo kinetics and explosion pathway , 2014 .
[5] Xin Chen,et al. Influence of Adhesives to Mg/PTFE Pyrotechnical Composition Performances , 2014 .
[6] P. Ramakrishna,et al. Effect of Specific Surface Area of Aluminum on Composite Solid Propellant Burning , 2013 .
[7] Huijie Lv,et al. Experimental Study of PTFE Powder Size Impact to Mg/PTFE Pyrotechnic Composition , 2012 .
[8] C. Jennings-White,et al. Hazardous Chemical Combinations: A Discussion , 2012 .
[9] Li-ping Chen,et al. Thermoanalytical Investigation on Pyrotechnic Mixtures Containing Mg-Al Alloy Powder and Barium Nitrate , 2012 .
[10] M. Surianarayanan,et al. Thermal characterization of pyrotechnic flash compositions , 2010 .
[11] K. V. Anand,et al. Effect of nano-aluminium in plateau-burning and catalyzed composite solid propellant combustion , 2009 .
[12] Richard A. Yetter,et al. Metal particle combustion and nanotechnology , 2009 .
[13] S. G. Hosseini,et al. Thermal decomposition of pyrotechnic mixtures containing either aluminum or magnesium powder as fuel , 2008 .
[14] Mao Gui-hai. Influence of Carbon Fiber on Burning Rate and Infrared Radiation Intensity of Mg/PTFE Infrared Composition , 2008 .
[15] V. A. Babuk,et al. Burning of Nano-Aluminized Composite Rocket Propellants , 2005 .
[16] S. M. Pourmortazavi,et al. Thermal decomposition of pyrotechnic mixtures containing sucrose with either potassium chlorate or potassium perchlorate , 2005 .
[17] J. J. Rooney,et al. A study of the influence of the fuel to oxidant ratio on the ageing of magnesium–strontium nitrate pyrotechnic compositions using isothermal microcalorimetry and thermal analysis techniques , 2005 .
[18] B. Berger. Parameters Influencing the Pyrotechnic Reaction , 2005 .
[19] L. Meda,et al. Pre and Post-Burning Analysis of Nano-Aluminized Solid Rocket Propellants , 2005 .
[20] Michelle L. Pantoya,et al. Laser ignition of nanocomposite thermites , 2004 .
[21] J. J. Rooney,et al. Studies on the ageing of a magnesium-potassium nitrate pyrotechnic composition using isothermal heat flow calorimetry and thermal analysis techniques , 2003 .
[22] Jinn-Shing Lee. Thermal properties and firing characteristics of the Zr/KClO4/Viton A priming compositions , 2002 .
[23] J. Seitzman,et al. The effects of bimodal aluminum with ultrafine aluminum on the burning rates of solid propellants , 2002 .
[24] M. E. Brown,et al. Some Thermal Studies on Pyrotechnic Compositions , 2001 .
[25] P. K. Gallagher,et al. Handbook of thermal analysis and calorimetry , 1998 .