Reaction mechanism, insensitivity and mechanical property of PTFE–Mg–W composites with magnesium particles surface modification

[1]  P. Ramakrishna,et al.  Effect of mechanical activation of high specific surface area aluminium with PTFE on composite solid propellant , 2016 .

[2]  Jin-Xu Liu,et al.  Investigation on reaction energy, mechanical behavior and impact insensitivity of W–PTFE–Al composites with different W percentage , 2016 .

[3]  Q. Jiao,et al.  Effect of Nano-Magnesium on the Thermal Decomposition of PTFE , 2014 .

[4]  Mandal Asit Baran,et al.  Water induced thermal decomposition of pyrotechnic mixtures – Thermo kinetics and explosion pathway , 2014 .

[5]  Xin Chen,et al.  Influence of Adhesives to Mg/PTFE Pyrotechnical Composition Performances , 2014 .

[6]  P. Ramakrishna,et al.  Effect of Specific Surface Area of Aluminum on Composite Solid Propellant Burning , 2013 .

[7]  Huijie Lv,et al.  Experimental Study of PTFE Powder Size Impact to Mg/PTFE Pyrotechnic Composition , 2012 .

[8]  C. Jennings-White,et al.  Hazardous Chemical Combinations: A Discussion , 2012 .

[9]  Li-ping Chen,et al.  Thermoanalytical Investigation on Pyrotechnic Mixtures Containing Mg-Al Alloy Powder and Barium Nitrate , 2012 .

[10]  M. Surianarayanan,et al.  Thermal characterization of pyrotechnic flash compositions , 2010 .

[11]  K. V. Anand,et al.  Effect of nano-aluminium in plateau-burning and catalyzed composite solid propellant combustion , 2009 .

[12]  Richard A. Yetter,et al.  Metal particle combustion and nanotechnology , 2009 .

[13]  S. G. Hosseini,et al.  Thermal decomposition of pyrotechnic mixtures containing either aluminum or magnesium powder as fuel , 2008 .

[14]  Mao Gui-hai Influence of Carbon Fiber on Burning Rate and Infrared Radiation Intensity of Mg/PTFE Infrared Composition , 2008 .

[15]  V. A. Babuk,et al.  Burning of Nano-Aluminized Composite Rocket Propellants , 2005 .

[16]  S. M. Pourmortazavi,et al.  Thermal decomposition of pyrotechnic mixtures containing sucrose with either potassium chlorate or potassium perchlorate , 2005 .

[17]  J. J. Rooney,et al.  A study of the influence of the fuel to oxidant ratio on the ageing of magnesium–strontium nitrate pyrotechnic compositions using isothermal microcalorimetry and thermal analysis techniques , 2005 .

[18]  B. Berger Parameters Influencing the Pyrotechnic Reaction , 2005 .

[19]  L. Meda,et al.  Pre and Post-Burning Analysis of Nano-Aluminized Solid Rocket Propellants , 2005 .

[20]  Michelle L. Pantoya,et al.  Laser ignition of nanocomposite thermites , 2004 .

[21]  J. J. Rooney,et al.  Studies on the ageing of a magnesium-potassium nitrate pyrotechnic composition using isothermal heat flow calorimetry and thermal analysis techniques , 2003 .

[22]  Jinn-Shing Lee Thermal properties and firing characteristics of the Zr/KClO4/Viton A priming compositions , 2002 .

[23]  J. Seitzman,et al.  The effects of bimodal aluminum with ultrafine aluminum on the burning rates of solid propellants , 2002 .

[24]  M. E. Brown,et al.  Some Thermal Studies on Pyrotechnic Compositions , 2001 .

[25]  P. K. Gallagher,et al.  Handbook of thermal analysis and calorimetry , 1998 .