Nonlinear Model Predictive Control for Constrained Output Path Following

We consider the tracking of geometric paths in output spaces of nonlinear systems subject to input and state constraints without pre-specified timing requirements, commonly referred to as constrained output path-following problems. Specifically, we propose a predictive control approach to constrained path-following problems with and without velocity assignments. We present sufficient convergence conditions based on terminal regions and end penalties. Furthermore, we analyze the geometric nature of constrained output path-following problems and thereby provide insight into the computation of suitable terminal control laws and terminal regions. We draw upon an example from robotics to illustrate our findings.

[1]  João Pedro Hespanha,et al.  Performance limitations in reference tracking and path following for nonlinear systems , 2008, Autom..

[2]  John Hauser,et al.  On the stability of receding horizon control with a general terminal cost , 2005, IEEE Transactions on Automatic Control.

[3]  Zhong-Ping Jiang,et al.  Robust adaptive path following of underactuated ships , 2004, Autom..

[4]  Kang G. Shin,et al.  Minimum-time control of robotic manipulators with geometric path constraints , 1985 .

[5]  João Pedro Hespanha,et al.  Path-following for nonminimum phase systems removes performance limitations , 2005, IEEE Transactions on Automatic Control.

[6]  V. Rovenski,et al.  Differential Geometry of Curves and Surfaces: A Concise Guide , 2005 .

[7]  Jan Swevers,et al.  Time-Optimal Path Tracking for Robots: A Convex Optimization Approach , 2009, IEEE Transactions on Automatic Control.

[8]  R. B. Vinter,et al.  Nonlinear stabilization using discontinuous moving-horizon control , 1994 .

[9]  Veit Hagenmeyer,et al.  Constrained reachability and trajectory generation for flat systems , 2014, Autom..

[10]  Colin Neil Jones,et al.  Trajectory-tracking and path-following controllers for constrained underactuated vehicles using Model Predictive Control , 2013, 2013 European Control Conference (ECC).

[11]  Frank Allgöwer,et al.  Nonlinear Model Predictive Control for Path Following Problems , 2012 .

[12]  Rolf Findeisen,et al.  A model predictive control approach to trajectory tracking problems via time-varying level sets of Lyapunov functions , 2011, IEEE Conference on Decision and Control and European Control Conference.

[13]  Dragan Nesic,et al.  Path Following for Nonlinear Systems With Unstable Zero Dynamics: An Averaging Solution , 2011, IEEE Transactions on Automatic Control.

[14]  Manfredi Maggiore,et al.  On Local Transverse Feedback Linearization , 2008, SIAM J. Control. Optim..

[15]  Rolf Findeisen,et al.  Model predictive path-following for constrained nonlinear systems , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[16]  Lars Grüne,et al.  Analysis and Design of Unconstrained Nonlinear MPC Schemes for Finite and Infinite Dimensional Systems , 2009, SIAM J. Control. Optim..

[17]  H. ChenT,et al.  A Quasi-Infinite Horizon Nonlinear Model Predictive Control Scheme with Guaranteed Stability * , 1998 .

[18]  Xiang Li,et al.  Nonlinear model predictive control for path following problems , 2015 .

[19]  Nahum Shimkin,et al.  Nonlinear Control Systems , 2008 .

[20]  B. Anderson,et al.  Optimal control: linear quadratic methods , 1990 .

[21]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[22]  Moritz Diehl,et al.  ACADO toolkit—An open‐source framework for automatic control and dynamic optimization , 2011 .

[23]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[24]  Veit Hagenmeyer,et al.  Optimal Exact Path-Following for Constrained Differentially Flat Systems , 2011 .

[25]  Rolf Findeisen,et al.  Predictive path-following control: Concept and implementation for an industrial robot , 2013, 2013 IEEE International Conference on Control Applications (CCA).

[26]  Petar V. Kokotovic,et al.  Path-Following for Nonlinear Systems With Unstable Zero Dynamics , 2006, IEEE Transactions on Automatic Control.

[27]  Stephen P. Boyd,et al.  Minimum-time speed optimisation over a fixed path , 2014, Int. J. Control.

[28]  Dragan Nesic,et al.  Path-Following for Nonlinear Systems With Unstable Zero Dynamics , 2007, IEEE Transactions on Automatic Control.

[29]  H. Piaggio Differential Geometry of Curves and Surfaces , 1952, Nature.

[30]  Manfredo P. do Carmo,et al.  Differential geometry of curves and surfaces , 1976 .

[31]  Chris Manzie,et al.  Model predictive contouring control , 2010, 49th IEEE Conference on Decision and Control (CDC).

[32]  João P. Hespanha,et al.  Trajectory-Tracking and Path-Following of Underactuated Autonomous Vehicles With Parametric Modeling Uncertainty , 2007, IEEE Transactions on Automatic Control.

[33]  Timm Faulwasser Optimization-based solutions to constrained trajectory-tracking and path-following problems , 2012 .

[34]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[35]  E B Lee,et al.  Foundations of optimal control theory , 1967 .

[36]  Roger Skjetne,et al.  Adaptive maneuvering, with experiments, for a model ship in a marine control laboratory , 2005, Autom..

[37]  Chris Manzie,et al.  Model Predictive Contouring Control for Biaxial Systems , 2013, IEEE Transactions on Control Systems Technology.

[38]  F. Fontes A General Framework to Design Stabilizing Nonlinear Model Predictive Controllers , 2001 .

[39]  R. Findeisen,et al.  Nonlinear Model Predictive Path-Following Control , 2009 .

[40]  Rolf Findeisen,et al.  Nonlinear model predictive control : a sampled data feedback perspective , 2005 .

[41]  J. Hauser,et al.  Feedback linearization of transverse dynamics for periodic orbits , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[42]  Roger Skjetne,et al.  Robust output maneuvering for a class of nonlinear systems , 2004, Autom..

[43]  Ionela Prodan,et al.  A predictive control-based algorithm for path following of autonomous aerial vehicles , 2013, 2013 IEEE International Conference on Control Applications (CCA).

[44]  Andreas Kugi,et al.  Real-time Nonlinear Model Predictive Path-Following Control of a Laboratory Tower Crane , 2014, IEEE Transactions on Control Systems Technology.

[45]  Rolf Findeisen,et al.  Predictive Path Following without Terminal Constraints , 2012 .

[46]  S. Kahne,et al.  Optimal control: An introduction to the theory and ITs applications , 1967, IEEE Transactions on Automatic Control.

[47]  D. Mayne,et al.  Robust receding horizon control of constrained nonlinear systems , 1993, IEEE Trans. Autom. Control..

[48]  K. D. Do,et al.  Global robust adaptive path following of underactuated ships , 2006, Autom..

[49]  Rolf Findeisen,et al.  Constrained Output Path-Following for Nonlinear Systems Using Predictive Control , 2010 .

[50]  G. Oriolo,et al.  Robotics: Modelling, Planning and Control , 2008 .

[51]  Manfredi Maggiore,et al.  Output stabilization and maneuver regulation: A geometric approach , 2006, Syst. Control. Lett..