Evaluation of ultrafast laser-based hard x-ray sources for phase-contrast imaging

The 2D projection phase-contrast imaging performance of the ultrafast laser-based x-ray (ULX) source has been investigated. The potential of such a novel x-ray source has been assessed by imaging a reference object (Contrast Detail Evaluation phantom) in the in-line holography geometry and by applying a simple 1D numerical model to the data analysis. The results indicate that the ULX is a promising technique for 2D projection phase-contrast imaging and for implementation of phase-contrast micro-Computed Tomography (μ-CT). This is because by using high contrast laser pulse ULX simultaneously provides a very small x-ray source size along with a high average x-ray flux. In addition, due to the ultrashort x-ray burst duration, ULX might allow practical implementation of ultrafast phase-contrast stroboscopy and time-of-flight based electronic scatter rejection. This technique is also of interest for time resolved radiography to follow shock waves and radiative fronts propagating in an opaque matter.

[1]  G. R. Bennett,et al.  Monochromatic x-ray imaging experiments on the Sandia National Laboratories Z facility (invited) , 2004 .

[2]  S. Wilkins,et al.  Phase-contrast imaging using polychromatic hard X-rays , 1996, Nature.

[3]  Michael D. Perry,et al.  Experimental Measurements of Hot Electrons Generated by Ultraintense ( > 10 19 W / cm 2 ) Laser-Plasma Interactions on Solid-Density Targets , 1998 .

[4]  P. Cloetens,et al.  Phase objects in synchrotron radiation hard x-ray imaging , 1996 .

[5]  A. Snigirev,et al.  On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation , 1995 .

[6]  S. Fourmaux,et al.  In-line phase-contrast imaging with a laser-based hard x-ray source , 2005 .

[7]  H Schwoerer,et al.  Spatial characteristics of Kalpha x-ray emission from relativistic femtosecond laser plasmas. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  P. Norreys,et al.  Role of the plasma scale length in the harmonic generation from solid targets , 1998 .

[9]  O. Peyrusse,et al.  Picosecond dynamics of a hot solid-density plasma , 1996 .

[10]  G. Mourou,et al.  X‐ray spectroscopy of hot solid density plasmas produced by subpicosecond high contrast laser pulses at 1018–1019 W/cm2 , 1995 .

[11]  H. Pépin,et al.  Spatial characteristics of continuum x-ray emission from lateral energy transport in CO/sub 2/-laser-produced plasmas , 1981 .

[12]  Gauthier,et al.  Efficient K alpha x-ray source from femtosecond laser-produced plasmas. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[13]  Bell,et al.  Collisionless absorption in sharp-edged plasmas. , 1992, Physical review letters.

[14]  A. E. Dangor,et al.  A study of picosecond lasersolid interactions up to 1019 W cm-2 , 1997 .

[15]  Gerard Mourou,et al.  Study of hard x-ray emission from intense femtosecond Ti:sapphire laser–solid target interactions , 2004 .

[16]  E. Fill,et al.  Spatial characteristics of Kα radiation from weakly relativistic laser plasmas , 2000 .

[17]  David A. Hammer,et al.  Phase-contrast x-ray radiography using the X pinch radiation , 2001, SPIE Optics + Photonics.

[18]  Alan F. Jankowski,et al.  Accessing ultrahigh-pressure, quasi-isentropic states of matter , 2004 .

[19]  Ronald R Price,et al.  Quantification of the effect of kvp on edge-enhancement index in phase-contrast radiography. , 2002, Medical physics.

[20]  Alexis Kudryashov,et al.  Low-cost adaptive optical devices for multipurpose applications , 1999, Other Conferences.

[21]  Anatoly Snigirev,et al.  Phase-contrast X-ray imaging with synchrotron radiation for materials science applications , 2003 .

[22]  M J Bono,et al.  Experimental investigation of high-mach-number 3D hydrodynamic jets at the national ignition facility. , 2005, Physical review letters.

[23]  S. Wilkins,et al.  Quantitative in-line phase-contrast imaging with multienergy X rays. , 2001, Physical review letters.

[24]  E Castelli,et al.  Mammography with synchrotron radiation: phase-detection techniques. , 2000, Radiology.

[25]  Hong-Ming Lin,et al.  Coherence-enhanced synchrotron radiology : refraction versus diffraction mechanisms. , 1999 .

[26]  L T Hudson,et al.  A curved crystal spectrometer for energy calibration and spectral characterization of mammographic x-ray sources. , 1996, Medical physics.

[27]  S. P. Hatchett,et al.  Hot electron diagnostic in a solid laser target by K-shell lines measurement from ultraintense laser–plasma interactions (3×1020 W/cm2,⩽400 J) , 2001 .

[28]  S. Wilkins,et al.  Contrast and resolution in imaging with a microfocus x-ray source , 1997 .

[29]  Price,et al.  Absorption of ultrashort laser pulses by solid targets heated rapidly to temperatures 1-1000 eV. , 1995, Physical review letters.

[30]  David R Pickens,et al.  Quantification of the effect of system and object parameters on edge enhancement in phase-contrast radiography. , 2003, Medical physics.

[31]  Sune Svanberg,et al.  Coronary angiography using laser plasma sources: X-ray source efficiency and optimization of a bent crystal monochromator , 2001 .

[32]  Gerard Mourou,et al.  High resolution hard x-ray spectroscopy of femtosecond laser-produced plasmas with a CZT detector , 2003 .

[33]  Jeremiah Brackbill,et al.  Magnetic-field--induced surface transport on laser-irradiated foils , 1982 .

[34]  Hong Liu,et al.  Clinical implementation of x-ray phase-contrast imaging: theoretical foundations and design considerations. , 2003, Medical physics.

[35]  Jeffrey A. Koch,et al.  High-energy Kα radiography using high-intensity, short-pulse lasersa) , 2006 .

[36]  G. Malka,et al.  Onset of diffuse reflectivity and fast electron flux inhibition in 528-nm-laser solid interactions at ultrahigh intensity , 1997 .

[37]  G. Margaritondo,et al.  Coherence-enhanced synchrotron radiology: simple theory and practical applications , 2002 .

[38]  Jean-Claude Kieffer,et al.  Hard x-ray emission in high intensity femtosecond laser–target interaction , 1999 .

[39]  C. Reich,et al.  Theory of K(alpha) generation by femtosecond laser-produced hot electrons in thin foils. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.