Characterization of zebrafish mutants with defects in embryonic hematopoiesis.
暂无分享,去创建一个
D A Kane | C. Nüsslein-Volhard | A. Brownlie | R. Kelsh | D. Ransom | F. V. van Eeden | C. Heisenberg | Yun-Jin Jiang | P. Haffter | M. Granato | M. Mullins | D. Kane | J. Odenthal | M. Furutani-Seiki | M. Hammerschmidt | M Hammerschmidt | C Nüsslein-Volhard | M Brand | M. Brand | Y. J. Jiang | E. Vogelsang | M C Mullins | F J van Eeden | M Granato | M Furutani-Seiki | P Haffter | C P Heisenberg | Y J Jiang | R N Kelsh | J Odenthal | F. V. Eeden | E Vogelsang | A Brownlie | D G Ransom
[1] S. Swerdlow,et al. A functional c-myb gene is required for normal murine fetal hepatic hematopoiesis , 1991, Cell.
[2] S. Orkin,et al. Lethal β-thalassaemia in mice lacking the erythroid CACCC-transcription factor EKLF , 1995, Nature.
[3] D. Ransom,et al. Intraembryonic hematopoietic cell migration during vertebrate development. , 1995, Proceedings of the National Academy of Sciences of the United States of America.
[4] C. Nüsslein-Volhard,et al. Large-scale mutagenesis in the zebrafish: in search of genes controlling development in a vertebrate , 1994, Current Biology.
[5] S. Orkin,et al. Hematopoiesis: how does it happen? , 1995, Current opinion in cell biology.
[6] J. D. Engel,et al. Vintage reds and whites: combinatorial transcription factor utilization in hematopoietic differentiation. , 1994, Current opinion in genetics & development.
[7] M. Moore,et al. Ontogeny of the Haemopoietic System: Yolk Sac Origin of In Vivo and In Vitro Colony Forming Cells in the Developing Mouse Embryo * , 1970, British journal of haematology.
[8] R. Ho,et al. The protein product of the zebrafish homologue of the mouse T gene is expressed in nuclei of the germ ring and the notochord of the early embryo. , 1992, Development.
[9] S. Orkin. The alpha thalassemias. , 1980, Texas reports on biology and medicine.
[10] Stuart H. Orkin,et al. An early haematopoietic defect in mice lacking the transcription factor GATA-2 , 1994, Nature.
[11] E. Scott,et al. Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. , 1994, Science.
[12] K. Nocka,et al. Molecular bases of dominant negative and loss of function mutations at the murine c‐kit/white spotting locus: W37, Wv, W41 and W. , 1990, The EMBO journal.
[13] P. Leder,et al. The hematopoietic growth factor KL is encoded by the SI locus and is the ligand of the c-kit receptor, the gene product of the W locus , 1990, Cell.
[14] D A Kane,et al. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. , 1996, Development.
[15] T. Evans,et al. Developmental biology of hematopoiesis. , 1997, Hematology/oncology clinics of North America.
[16] D. Williams,et al. Steel-Dickie mutation encodes a c-kit ligand lacking transmembrane and cytoplasmic domains. , 1991, Proceedings of the National Academy of Sciences of the United States of America.
[17] W. T. Catton. Blood cell formation in certain teleost fishes. , 1951, Blood.
[18] P. Vincent,et al. Blood — Principles and Practice of Hematology , 1995 .
[19] S. Orkin,et al. Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1 , 1991, Nature.
[20] R. Ho,et al. Cell-autonomous action of zebrafish spt-1 mutation in specific mesodermal precursors , 1990, Nature.
[21] S. Orkin,et al. In vitro differentiation of murine embryonic stem cells. New approaches to old problems. , 1996, The Journal of clinical investigation.
[22] L. Zon,et al. Cloche, an early acting zebrafish gene, is required by both the endothelial and hematopoietic lineages. , 1995, Development.
[23] M. Evans,et al. The Oncogenic Cysteine-rich LIM domain protein Rbtn2 is essential for erythroid development , 1994, Cell.
[24] I. Iuchi,et al. Erythropoiesis in the developing rainbow trout, Salmo gairdneri irideus: histochemical and immunochemical detection of erythropoietic organs. , 1983, The Journal of experimental zoology.
[25] A. Reith,et al. The Mouse W/c‐kit Locus , 1990, Ciba Foundation symposium.
[26] A. Colle-Vandevelde. Blood Anlage in Teleostei , 1963, Nature.
[27] G. Keller,et al. Novel insights into erythroid development revealed through in vitro differentiation of GATA-1 embryonic stem cells. , 1994, Genes & development.
[28] S. Orkin,et al. Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL , 1995, Nature.
[29] C. Nüsslein-Volhard,et al. Zebrafish pigmentation mutations and the processes of neural crest development. , 1996, Development.
[30] K. Nocka,et al. Candidate ligand for the c‐kit transmembrane kinase receptor: KL, a fibroblast derived growth factor stimulates mast cells and erythroid progenitors. , 1990, The EMBO journal.
[31] C. Glomski,et al. The phylogenetic odyssey of the erythrocyte. III. Fish, the lower vertebrate experience. , 1992, Histology and histopathology.
[32] D. Higgs,et al. Human embryonic zeta-globin chains in fetal and newborn blood. , 1989, Blood.
[33] J. Baron,et al. The Molecular Basis of Blood Diseases , 1994 .
[34] S. Orkin,et al. Regulation of globin gene expression in erythroid cells. , 1995, European journal of biochemistry.
[35] Janet Rossant,et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice , 1995, Nature.
[36] Y. Kunz,et al. ONTOGENESIS OF HAEMATOPOIETIC SITES IN BRACHYDANIO RERIO (HAMILTON‐BUCHANAN) (TELEOSTEI) * , 1977, Development, growth & differentiation.