Neutrophil-mediated erythrophagocytosis following Russell's viper (Daboia russelii) bite.

[1]  P. Thirumalaikolundusubramanian,et al.  Rapid identification of bilateral adrenal and pituitary haemorrhages induced by Russell's viper envenomation results in positive patient outcome. , 2023, Toxicon : official journal of the International Society on Toxinology.

[2]  P. Thirumalaikolundusubramanian,et al.  Russell's viper envenomation induces rectus sheath haematoma. , 2023, Toxicon : official journal of the International Society on Toxinology.

[3]  Atanu Chandra,et al.  Bilateral parotid swelling in viper bite: further evidence for a poor prognosis , 2022, BMJ Case Reports.

[4]  P. Thirumalaikolundusubramanian,et al.  Development of Wunderlich syndrome following a Russell's viper bite. , 2022, Toxicon : official journal of the International Society on Toxinology.

[5]  G. Tobón,et al.  Biological Effects of Animal Venoms on the Human Immune System , 2022, Toxins.

[6]  S. Miller,et al.  Ultrasound-Guided Compression Method Effectively Counteracts Russell’s Viper Bite-Induced Pseudoaneurysm , 2022, Toxins.

[7]  N. Elangovan,et al.  Rapid development of a salivary calculus in submandibular gland and its potential causes in a young victim following Russell's viper bite. , 2021, Toxicon : official journal of the International Society on Toxinology.

[8]  N. Elangovan,et al.  Splenic rupture and subsequent splenectomy in a young healthy victim following Russell's viper bite. , 2021, Toxicon : official journal of the International Society on Toxinology.

[9]  K. Patel,et al.  Priapism following a juvenile Russell’s viper bite: An unusual case report , 2021, PLoS neglected tropical diseases.

[10]  K. Patel,et al.  Venomous snakebites: Rapid action saves lives-A multifaceted community education programme increases awareness about snakes and snakebites among the rural population of Tamil Nadu, India. , 2020, PLoS neglected tropical diseases.

[11]  J. Gutiérrez,et al.  Polymorphonuclear neutrophil leukocytes in snakebite envenoming. , 2020, Toxicon : official journal of the International Society on Toxinology.

[12]  P. Jha,et al.  Trends in snakebite deaths in India from 2000 to 2019 in a nationally representative mortality study , 2020, eLife.

[13]  P. Kubes,et al.  The Neutrophil's Role During Health and Disease. , 2019, Physiological reviews.

[14]  S. Kularatne,et al.  Microangiopathic Hemolytic Anemia Following Three Different Species of Hump-Nosed Pit Viper (Genus: Hypnale) Envenoming in Sri Lanka. , 2018, Wilderness & environmental medicine.

[15]  Alok Kumar,et al.  A rare case report of Russell’s viper snakebite with ischemic stroke , 2018 .

[16]  D. Warrell Clinical Toxicology of Snakebite In Africa and The Middle East / Arabian Peninsula , 2017 .

[17]  J. Chippaux Snakebite envenomation turns again into a neglected tropical disease! , 2017, Journal of Venomous Animals and Toxins including Tropical Diseases.

[18]  T. K. van den Berg,et al.  Human and murine splenic neutrophils are potent phagocytes of IgG-opsonized red blood cells. , 2017, Blood advances.

[19]  Jong Ho Lee A rare case of erythrophagocytosis by neutrophils on the peripheral blood smear , 2017, Blood research.

[20]  J. Kool,et al.  Haemotoxic snake venoms: their functional activity, impact on snakebite victims and pharmaceutical promise , 2017, British journal of haematology.

[21]  C. Teixeira,et al.  The role of TLR2 in the acute inflammatory response induced by Bothrops atrox snake venom. , 2016, Toxicon : official journal of the International Society on Toxinology.

[22]  M. Mohammad,et al.  Osmotic fragility of human erythrocytes in vitro using Vipera lebetina venom , 2014, Comparative Clinical Pathology.

[23]  J. Balsinde,et al.  Critical Role of TLR2 and MyD88 for Functional Response of Macrophages to a Group IIA-Secreted Phospholipase A2 from Snake Venom , 2014, PloS one.

[24]  L. A. Calderon,et al.  Effect of L-amino acid oxidase from Calloselasma rhodosthoma snake venom on human neutrophils. , 2014, Toxicon : official journal of the International Society on Toxinology.

[25]  T. K. van den Berg,et al.  Of macrophages and red blood cells; a complex love story , 2013, Front. Physiol..

[26]  E. Hutchinson,et al.  Snakebite and Its Socio-Economic Impact on the Rural Population of Tamil Nadu, India , 2013, PloS one.

[27]  A. Mukherjee,et al.  Differential mode of attack on membrane phospholipids by an acidic phospholipase A₂ (RVVA-PLA₂-I) from Daboia russelli venom. , 2012, Biochimica et biophysica acta.

[28]  T. K. van den Berg,et al.  CD47 functions as a molecular switch for erythrocyte phagocytosis. , 2012, Blood.

[29]  K. Lewandowski,et al.  Erythrophagocytosis by neutrophils – a rare morphological phenomenon resulting in acquired haemolytic anaemia? , 2011, International journal of laboratory hematology.

[30]  I. Križaj,et al.  Haemostatically active proteins in snake venoms. , 2011, Toxicon : official journal of the International Society on Toxinology.

[31]  T. Zorn,et al.  Delayed local inflammatory response induced by Thalassophryne nattereri venom is related to extracellular matrix degradation , 2009, International journal of experimental pathology.

[32]  J. Gutiérrez,et al.  Anti-human erythrocyte antibodies in horse-derived antivenoms used in the treatment of snakebite envenomations. , 2007, Biologicals : journal of the International Association of Biological Standardization.

[33]  R. Mebius,et al.  Structure and function of the spleen , 2005, Nature Reviews Immunology.

[34]  K. Clemetson,et al.  Snake venoms and hemostasis , 2005, Journal of thrombosis and haemostasis : JTH.

[35]  David G Lalloo,et al.  Snake Antivenoms , 2003, Journal of toxicology. Clinical toxicology.

[36]  S. S. Levinson,et al.  Towards a better understanding of heterophile (and the like) antibody interference with modern immunoassays. , 2002, Clinica chimica acta; international journal of clinical chemistry.

[37]  C. Becker,et al.  β‐Bungarotoxin is a potent inducer of apoptosis in cultured rat neurons by receptor‐mediated internalization , 2001, The European journal of neuroscience.

[38]  P. Rieu,et al.  Neutrophils: Molecules, Functions and Pathophysiological Aspects , 2000, Laboratory Investigation.

[39]  K. Titani,et al.  Snake venom proteases affecting hemostasis and thrombosis. , 2000, Biochimica et biophysica acta.

[40]  Y. Shoenfeld,et al.  In vivo administration of intravenous immunoglobulin (IVIg) can lead to enhanced erythrocyte sequestration. , 1999, Journal of autoimmunity.

[41]  J. Gutiérrez,et al.  A randomized blinded clinical trial of two antivenoms, prepared by caprylic acid or ammonium sulphate fractionation of IgG, in Bothrops and Porthidium snake bites in Colombia: correlation between safety and biochemical characteristics of antivenoms. , 1999, Toxicon : official journal of the International Society on Toxinology.

[42]  A. Avila,et al.  Randomized comparative trial of three antivenoms in the treatment of envenoming by lance-headed vipers (Bothrops jararaca) in São Paulo, Brazil. , 1993, The Quarterly journal of medicine.

[43]  E. Eichner Spider bite hemolytic anemia: positive Coombs' test, erythrophagocytosis, and leukoerythroblastic smear. , 1984, American journal of clinical pathology.

[44]  A. Devries,et al.  SUSCEPTIBILITY OF ERYTHROCYTES OF VARIOUS ANIMAL SPECIES TO THE HEMOLYTIC AND PHOSPHOLIPID SPLITTING ACTION OF SNAKE VENOM. , 1964, Biochimica et biophysica acta.

[45]  S. Gitter,et al.  Hemolytic action of indirect lytic snake venom in vivo , 1962 .