Blind source separation for ambulatory sleep recording

This paper deals with the conception of a new system for sleep staging in ambulatory conditions. Sleep recording is performed by means of five electrodes: two temporal, two frontal and a reference. This configuration enables to avoid the chin area to enhance the quality of the muscular signal and the hair region for patient convenience. The electroencephalopgram (EEG), eletromyogram (EMG), and elctrooculogram (EOG) signals are separated using the Independent Component Analysis approach. The system is compared to a standard sleep analysis system using polysomnographic recordings of 14 patients. The overall concordance of 67.2% is achieved between the two systems. Based on the validation results and the computational efficiency we recommend the clinical use of the proposed system in a commercial sleep analysis platform

[1]  A. Rechtschaffen A manual of Standardized Terminology , 1968 .

[2]  A. Rechtschaffen,et al.  A manual of standardized terminology, technique and scoring system for sleep stages of human subjects , 1968 .

[3]  E. Wolpert A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects. , 1969 .

[4]  J. Cardoso,et al.  Blind beamforming for non-gaussian signals , 1993 .

[5]  T. Young,et al.  The occurrence of sleep-disordered breathing among middle-aged adults. , 1993, The New England journal of medicine.

[6]  G. Man,et al.  Validation of a portable sleep apnea monitoring device. , 1995, Chest.

[7]  L. Findley,et al.  Vigilance and automobile accidents in patients with sleep apnea or narcolepsy. , 1995, Chest.

[8]  Aapo Hyvärinen,et al.  A Fast Fixed-Point Algorithm for Independent Component Analysis , 1997, Neural Computation.

[9]  Eric Moulines,et al.  A blind source separation technique using second-order statistics , 1997, IEEE Trans. Signal Process..

[10]  Tzyy-Ping Jung,et al.  Extended ICA Removes Artifacts from Electroencephalographic Recordings , 1997, NIPS.

[11]  D. Chakrabarti,et al.  A fast fixed - point algorithm for independent component analysis , 1997 .

[12]  Aapo Hyvärinen,et al.  Fast and robust fixed-point algorithms for independent component analysis , 1999, IEEE Trans. Neural Networks.

[13]  A. Pack,et al.  Economic Implications of the Diagnosis of Obstructive Sleep Apnea , 1999, Annals of Internal Medicine.

[14]  F. Portier,et al.  Evaluation of home versus laboratory polysomnography in the diagnosis of sleep apnea syndrome. , 2000, American journal of respiratory and critical care medicine.

[15]  Syndrome d'apnées obstructives du sommeil, E. Weitzenblum, J.L. Racirieux (Eds.). Masson (1999), 222 , 2000 .

[16]  M. Teplan FUNDAMENTALS OF EEG MEASUREMENT , 2002 .

[17]  Damjan Zazula,et al.  Single autoterms selection for blind source separation in time-frequency plane , 2002, 2002 11th European Signal Processing Conference.

[18]  Reconnaissance des formes en présence d'incertitude sur l'expertise : application à l'étude des phases d'activation transitoire du sommeil chez l'homme , 2002 .

[19]  W. Ward Flemons,et al.  Home diagnosis of sleep apnoeas: A systematic review of the literature , 2003 .

[20]  W. Flemons,et al.  Home diagnosis of sleep apnea: a systematic review of the literature. An evidence review cosponsored by the American Academy of Sleep Medicine, the American College of Chest Physicians, and the American Thoracic Society. , 2003, Chest.

[21]  Lotfi Senhadji,et al.  Séparation de mélanges par ondelettes et réseaux de neurones : étude comparée , 2003 .

[22]  Lotfi Senhadji,et al.  Extraction and separation of eyes movements and the muscular tonus from a restricted number of electrodes using the independent component analysis , 2003, Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No.03CH37439).