The geometry of logconcave functions and sampling algorithms
暂无分享,去创建一个
[1] A. Prékopa. Logarithmic concave measures with applications to stochastic programming , 1971 .
[2] L. Leindler. On a Certain Converse of Hölder’s Inequality , 1972 .
[3] A. Prékopa. On logarithmic concave measures and functions , 1973 .
[4] Mark Jerrum,et al. Approximating the Permanent , 1989, SIAM J. Comput..
[5] R. Wets,et al. Stochastic programming , 1989 .
[6] David Applegate,et al. Sampling and integration of near log-concave functions , 1991, STOC '91.
[7] Miklós Simonovits,et al. Random Walks in a Convex Body and an Improved Volume Algorithm , 1993, Random Struct. Algorithms.
[8] Robert L. Smith,et al. Improving Hit-and-Run for global optimization , 1993, J. Glob. Optim..
[9] Miklós Simonovits,et al. Isoperimetric problems for convex bodies and a localization lemma , 1995, Discret. Comput. Geom..
[10] M. Rudelson. Random Vectors in the Isotropic Position , 1996, math/9608208.
[11] M. Simonovits,et al. Random walks and an O * ( n 5 ) volume algorithm for convex bodies , 1997 .
[12] J. Bourgain. Random Points in Isotropic Convex Sets , 1998 .
[13] László Lovász,et al. Hit-and-run mixes fast , 1999, Math. Program..
[14] A. Frieze,et al. Log-Sobolev inequalities and sampling from log-concave distributions , 1999 .
[15] Santosh S. Vempala,et al. Efficient algorithms for universal portfolios , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.
[16] Santosh S. Vempala,et al. Hit-and-run from a corner , 2004, STOC '04.
[17] Santosh S. Vempala,et al. Solving convex programs by random walks , 2004, JACM.