Racoon: A parallel mesh-adaptive framework for hyperbolic conservation laws

We report on the development of a computational framework for the parallel, mesh-adaptive solution of systems of hyperbolic conservation laws like the time-dependent Euler equations in compressible gas dynamics or Magneto-Hydrodynamics (MHD) and similar models in plasma physics. Local mesh refinement is realized by the recursive bisection of grid blocks along each spatial dimension, implemented numerical schemes include standard finite-differences as well as shock-capturing central schemes, both in connection with Runge-Kutta type integrators. Parallel execution is achieved through a configurable hybrid of POSIX-multi-threading and MPI distribution with dynamic load balancing. One-, two- and three-dimensional test computations for the Euler equations have been carried out and show good parallel scaling behavior. The Racoon framework is currently used to study the formation of singularities in plasmas and fluids.

[1]  Eitan Tadmor,et al.  Nonoscillatory Central Schemes for Multidimensional Hyperbolic Conservation Laws , 1998, SIAM J. Sci. Comput..

[2]  Gábor Tóth,et al.  A General Code for Modeling MHD Flows on Parallel Computers: Versatile Advection Code , 1996 .

[3]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[4]  S. Champeaux,et al.  Alfvén-wave filamentation , 1997, Journal of Plasma Physics.

[5]  G. Sod A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws , 1978 .

[6]  D. D. Zeeuw,et al.  Global three‐dimensional MHD simulation of a space weather event: CME formation, interplanetary propagation, and interaction with the magnetosphere , 2000 .

[7]  D. Hilbert Über die stetige Abbildung einer Linie auf ein Flächenstück , 1935 .

[8]  Rainer Grauer,et al.  Adaptive Mesh Refinement for Singular Current Sheets in Incompressible Magnetohydrodynamic Flows , 1997 .

[9]  D. Laveder,et al.  Transverse dynamics of dispersive Alfvén waves. I. Direct numerical evidence of filamentation , 2002 .

[10]  P. Lax Weak solutions of nonlinear hyperbolic equations and their numerical computation , 1954 .

[11]  P. Woodward,et al.  The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .

[12]  Doron Levy,et al.  A Third-Order Semidiscrete Central Scheme for Conservation Laws and Convection-Diffusion Equations , 2000, SIAM J. Sci. Comput..

[13]  D. Hilbert Ueber die stetige Abbildung einer Line auf ein Flächenstück , 1891 .

[14]  P. Roe,et al.  A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics , 1999 .

[15]  I. Bohachevsky,et al.  Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics , 1959 .

[16]  Grauer,et al.  Current-sheet formation in 3D ideal incompressible magnetohydrodynamics , 2000, Physical review letters.

[17]  Eric Ronald Priest,et al.  Magnetic Reconnection: Current-Sheet Formation , 2000 .

[18]  Eleuterio F. Toro,et al.  A weighted average flux method for hyperbolic conservation laws , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[19]  B. Fryxell,et al.  FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes , 2000 .

[20]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[21]  R. LeVeque Approximate Riemann Solvers , 1992 .

[22]  E. Tadmor,et al.  New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection—Diffusion Equations , 2000 .

[23]  U. Ziegler,et al.  The effect of rotation on the buoyant rise of magnetic flux tubes in accretion disks , 2001 .

[24]  Kai Germaschewski,et al.  ADAPTIVE MESH REFINEMENT FOR SINGULAR SOLUTIONS OF THE INCOMPRESSIBLE EULER EQUATIONS , 1998 .

[25]  P. Woodward,et al.  The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .

[26]  Rony Keppens,et al.  OpenMP Parallelism for Multi-dimensional Grid-Adaptive Magnetohydrodynamic Simulations , 2002, International Conference on Computational Science.

[27]  E. Tadmor,et al.  Non-oscillatory central differencing for hyperbolic conservation laws , 1990 .

[28]  Gerhard Zumbusch,et al.  Parallel Multilevel Methods , 2003 .

[29]  J. P. Goedbloed,et al.  Adaptive Mesh Refinement for conservative systems: multi-dimensional efficiency evaluation , 2003, astro-ph/0403124.

[30]  Oskar Steiner,et al.  Dynamic Interaction of Convection with Magnetic Flux Sheets: First Results of a New MHD Code , 1994 .

[31]  Kai Germaschewski,et al.  Splittings, coalescence, bunch and snake patterns in the 3D nonlinear Schrödinger equation with anisotropic dispersion , 2001 .

[32]  Gerhard Zumbusch,et al.  On the Quality of Space-Filling Curve Induced Partitions , 2000 .