Racoon: A parallel mesh-adaptive framework for hyperbolic conservation laws
暂无分享,去创建一个
[1] Eitan Tadmor,et al. Nonoscillatory Central Schemes for Multidimensional Hyperbolic Conservation Laws , 1998, SIAM J. Sci. Comput..
[2] Gábor Tóth,et al. A General Code for Modeling MHD Flows on Parallel Computers: Versatile Advection Code , 1996 .
[3] P. Colella,et al. Local adaptive mesh refinement for shock hydrodynamics , 1989 .
[4] S. Champeaux,et al. Alfvén-wave filamentation , 1997, Journal of Plasma Physics.
[5] G. Sod. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws , 1978 .
[6] D. D. Zeeuw,et al. Global three‐dimensional MHD simulation of a space weather event: CME formation, interplanetary propagation, and interaction with the magnetosphere , 2000 .
[7] D. Hilbert. Über die stetige Abbildung einer Linie auf ein Flächenstück , 1935 .
[8] Rainer Grauer,et al. Adaptive Mesh Refinement for Singular Current Sheets in Incompressible Magnetohydrodynamic Flows , 1997 .
[9] D. Laveder,et al. Transverse dynamics of dispersive Alfvén waves. I. Direct numerical evidence of filamentation , 2002 .
[10] P. Lax. Weak solutions of nonlinear hyperbolic equations and their numerical computation , 1954 .
[11] P. Woodward,et al. The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .
[12] Doron Levy,et al. A Third-Order Semidiscrete Central Scheme for Conservation Laws and Convection-Diffusion Equations , 2000, SIAM J. Sci. Comput..
[13] D. Hilbert. Ueber die stetige Abbildung einer Line auf ein Flächenstück , 1891 .
[14] P. Roe,et al. A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics , 1999 .
[15] I. Bohachevsky,et al. Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics , 1959 .
[16] Grauer,et al. Current-sheet formation in 3D ideal incompressible magnetohydrodynamics , 2000, Physical review letters.
[17] Eric Ronald Priest,et al. Magnetic Reconnection: Current-Sheet Formation , 2000 .
[18] Eleuterio F. Toro,et al. A weighted average flux method for hyperbolic conservation laws , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[19] B. Fryxell,et al. FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes , 2000 .
[20] P. Roe. Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .
[21] R. LeVeque. Approximate Riemann Solvers , 1992 .
[22] E. Tadmor,et al. New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection—Diffusion Equations , 2000 .
[23] U. Ziegler,et al. The effect of rotation on the buoyant rise of magnetic flux tubes in accretion disks , 2001 .
[24] Kai Germaschewski,et al. ADAPTIVE MESH REFINEMENT FOR SINGULAR SOLUTIONS OF THE INCOMPRESSIBLE EULER EQUATIONS , 1998 .
[25] P. Woodward,et al. The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .
[26] Rony Keppens,et al. OpenMP Parallelism for Multi-dimensional Grid-Adaptive Magnetohydrodynamic Simulations , 2002, International Conference on Computational Science.
[27] E. Tadmor,et al. Non-oscillatory central differencing for hyperbolic conservation laws , 1990 .
[28] Gerhard Zumbusch,et al. Parallel Multilevel Methods , 2003 .
[29] J. P. Goedbloed,et al. Adaptive Mesh Refinement for conservative systems: multi-dimensional efficiency evaluation , 2003, astro-ph/0403124.
[30] Oskar Steiner,et al. Dynamic Interaction of Convection with Magnetic Flux Sheets: First Results of a New MHD Code , 1994 .
[31] Kai Germaschewski,et al. Splittings, coalescence, bunch and snake patterns in the 3D nonlinear Schrödinger equation with anisotropic dispersion , 2001 .
[32] Gerhard Zumbusch,et al. On the Quality of Space-Filling Curve Induced Partitions , 2000 .