Phylogenetic relationships among algae based on complete large-subunit rRNA sequences.
暂无分享,去创建一个
Yves Van de Peer | Rupert De Wachter | Y. Peer | R. Wachter | Abdelghani Ben Ali | Raymond De Baere | Gert Van der Auwera | R. Baere | G. Auwera | A. B. Ali
[1] S. P. Gibbs. THE CHLOROPLASTS OF SOME ALGAL GROUPS MAY HAVE EVOLVED FROM ENDOSYMBIOTIC EUKARYOTIC ALGAE , 1981, Annals of the New York Academy of Sciences.
[2] R. Wetherbee,et al. A PHYLOGENETIC ANALYSIS OF THE SYNUROPHYCEAE USING MOLECULAR DATA AND SCALE CASE MORPHOLOGY , 1997 .
[3] S. P. Gibbs. The evolution of algal chloroplasts , 1992 .
[4] T. Cavalier-smith,et al. Diversification of a Chimaeric Algal Group, the Chlorarachniophytes: Phylogeny of Nuclear and Nucleomorph Small-Subunit rRNA Genes , 1999 .
[5] Hervé Philippe,et al. The origin of red algae and the evolution of chloroplasts , 2000, Nature.
[6] T. Cavalier-smith,et al. Ribosomal RNA Evidence for Chloroplast Loss within Heterokonta: Pedinellid Relationships and a Revised Classification of Ochristan Algae , 1995 .
[7] R. Andersen,et al. Phylogenetic analyses of the rbcL sequences from haptophytes and heterokont algae suggest their chloroplasts are unrelated. , 1997, Molecular biology and evolution.
[8] R. Gutell,et al. Are red algae plants , 1995 .
[9] S. Stickel,et al. Monophyletic origins of the metazoa: an evolutionary link with fungi , 1993, Science.
[10] Charles F. Delwiche,et al. Tracing the Thread of Plastid Diversity through the Tapestry of Life , 1999, The American Naturalist.
[11] R. Andersen. SYNUROPHYCEAE CLASSIS NOV., A NEW CLASS OF ALGAE , 1987 .
[12] J. M. Whatley. Membranes and Plastid Origins , 1992 .
[13] M. Hasegawa,et al. Gene transfer to the nucleus and the evolution of chloroplasts , 1998, Nature.
[14] C. Woese,et al. Ribosomal RNA sequence suggests microsporidia are extremely ancient eukaryotes , 1987, Nature.
[15] David M. Williams. PHYLOGENETIC RELATIONSHIPS AMONG THE CHROMISTA: A REVIEW AND PRELIMINARY ANALYSIS , 1991, Cladistics : the international journal of the Willi Hennig Society.
[16] M. Sogin,et al. Ribosomal RNA sequences of Sarcocystis muris, Theileria annulata and Crypthecodinium cohnii reveal evolutionary relationships among apicomplexans, dinoflagellates, and ciliates. , 1991, Molecular and biochemical parasitology.
[17] M. Melkonian,et al. Comparisons of nuclear-encoded small-subunit ribosomal RNAs reveal the evolutionary position of the Glaucocystophyta. , 1995, Molecular biology and evolution.
[18] W. Doolittle,et al. Microsporidia are related to Fungi: evidence from the largest subunit of RNA polymerase II and other proteins. , 1999, Proceedings of the National Academy of Sciences of the United States of America.
[19] R. Andersen,et al. ULTRASTRUCTURE AND 18S RRNA GENE SEQUENCE FOR PELAGOMONAS CALCEOLATA GEN. ET SP. NOV. AND THE DESCRIPTION OF A NEW ALGAL CLASS, THE PELAGOPHYCEAE CLASSIS NOV. 1 , 1993 .
[20] T. Cavalier-smith. The Origin, Losses and Gains of Chloroplasts , 1992 .
[21] R. Bidigare,et al. Phaeothamniophyceae Classis Nova: A New Lineage of Chromophytes Based upon Photosynthetic Pigments, rbcL Sequence Analysis and Ultrastructure. , 1998, Protist.
[22] D. Hibberd,et al. Observations on the Cytology and Ultrastructure of the New Algal Class, Eustigmatophyceae , 1972 .
[23] D. M. Williams. Cladistic methods and chromophyte phylogeny. , 1991, Bio Systems.
[24] D. Bhattacharya,et al. ALGAE CONTAINING CHLOROPHYLLS a + c ARE PARAPHYLETIC: MOLECULAR EVOLUTIONARY ANALYSIS OF THE CHROMOPHYTA , 1992, Evolution; international journal of organic evolution.
[25] M. Melkonian,et al. Molecular Evolutionary Analyses of Nuclear‐Encoded Small Subunit Ribosomal RNA Identify an Independent Rhizopod Lineage Containing the Euglyphina and the Chlorarachniophyta , 1995, The Journal of eukaryotic microbiology.
[26] W. Doolittle,et al. A kingdom-level phylogeny of eukaryotes based on combined protein data. , 2000, Science.
[27] J. Felsenstein. CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.
[28] P. D. Rijk,et al. The phylogeny of the Hyphochytriomycota as deduced from ribosomal RNA sequences of Hyphochytrium catenoides. , 1995 .
[29] R. Andersen,et al. Cladistic analyses of combined traditional and molecular data sets reveal an algal lineage. , 1995, Proceedings of the National Academy of Sciences of the United States of America.
[30] D. Patterson. Stramenopiles: Chromophytes from a protistan perspective , 1989 .
[31] W. Ford Doolittle,et al. An Updated and Comprehensive rRNA Phylogeny of (Crown) Eukaryotes Based on Rate-Calibrated Evolutionary Distances , 2000, Journal of Molecular Evolution.
[32] W. Doolittle,et al. Alpha-tubulin from early-diverging eukaryotic lineages and the evolution of the tubulin family. , 1996, Molecular biology and evolution.
[33] G. McFadden. Second-hand Chloroplasts: Evolution of Cryptomonad Algae , 1993 .
[34] P. de Rijk,et al. The origin of red algae and cryptomonad nucleomorphs: A comparative phylogeny based on small and large subunit rRNA sequences of Palmaria palmata, Gracilaria verrucosa, and the Guillardia theta nucleomorph. , 1998, Molecular phylogenetics and evolution.
[35] Y. Peer,et al. Microsporidia: accumulating molecular evidence that a group of amitochondriate and suspectedly primitive eukaryotes are just curious fungi. , 2000, Gene.
[36] D. Bhattacharya,et al. THE PHYLOGENY OF PLASTIDS: A REVIEW BASED ON COMPARISONS OF SMALL‐SUBUNIT RIBOSOMAL RNA CODING REGIONS , 1995 .
[37] M. Sogin,et al. Sequence Analysis of the Small Subunit Ribosomal Rnas of Three Zoosporic Fungi and Implications for Fungal Evolution , 1990 .
[38] S. Baldauf. A Search for the Origins of Animals and Fungi: Comparing and Combining Molecular Data , 1999, The American Naturalist.
[39] Yves Van de Peer,et al. The European Large Subunit Ribosomal RNA database , 2000, Nucleic Acids Res..
[40] R. de Wachter,et al. Complete large subunit ribosomal RNA sequences from the heterokont algae Ochromonas danica, Nannochloropsis salina, and Tribonema aequale, and phylogenetic analysis. , 1997, Journal of molecular evolution.
[41] Y. van de Peer,et al. Phylogenetic analysis of the SSU rRNA from members of the Chrysophyceae. , 1999, Protist.
[42] M. Sogin,et al. Eukaryote origins and protistan diversity. The origin and evolution of prokaryotic and eukaryotic cells. , 1992 .
[43] Yves Van de Peer,et al. Evolutionary Relationships Among the Eukaryotic Crown Taxa Taking into Account Site-to-Site Rate Variation in 18S rRNA , 1997, Journal of Molecular Evolution.
[44] R De Wachter,et al. DCSE, an interactive tool for sequence alignment and secondary structure research. , 1993, Computer applications in the biosciences : CABIOS.
[45] S. P. Gibbs,et al. EVIDENCE THAT THE NUCLEOMORPHS OF CHLORARACHNION REPTANS (CHLORARACHNIOPHYCEAE) ARE VESTIGIAL NUCLEI: MORPHOLOGY, DIVISION AND DNA‐DAPI FLUORESCENCE 1 , 1989 .
[46] A. Knoll,et al. The early evolution of eukaryotes: a geological perspective. , 1992, Science.
[47] Hervé Philippe,et al. Early–branching or fast–evolving eukaryotes? An answer based on slowly evolving positions , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.
[48] T. Cavalier-smith. Membrane heredity, symbiogenesis, and the multiple origins of algae , 1995 .
[49] M. Allard,et al. The production of single-stranded DNA suitable for sequencing using the polymerase chain reaction. , 1991, BioTechniques.
[50] Y Van de Peer,et al. Substitution rate calibration of small subunit ribosomal RNA identifies chlorarachniophyte endosymbionts as remnants of green algae. , 1996, Proceedings of the National Academy of Sciences of the United States of America.
[51] T. Cavalier-smith,et al. Single gene circles in dinoflagellate chloroplast genomes , 1999, Nature.
[52] D. Hibberd,et al. A NEW ALGAL CLASS — THE EUSTIGMATOPHYCEAE , 1971 .
[53] R. Andersen,et al. Phylogeny of the Eustigmatophyceae Based upon 18S rDNA, with Emphasis on Nannochloropsis. , 1998, Protist.
[54] K. Strimmer,et al. Quartet Puzzling: A Quartet Maximum-Likelihood Method for Reconstructing Tree Topologies , 1996 .
[55] J. Palmer,et al. Animals and fungi are each other's closest relatives: congruent evidence from multiple proteins. , 1993, Proceedings of the National Academy of Sciences of the United States of America.
[56] M. Sogin,et al. A NEW PHYLOGENY FOR CHROMOPHYTE ALGAE USING 16S‐LIKE RRNA SEQUENCES FROM MALLOMONAS PAPILLOSA (SYNUROPHYCEAE) AND TRIBONEMA AEQUALE (XANTHOPHYCEAE) 1 , 1991 .
[57] M. Sogin,et al. Molecular phylogenetic analysis of actin genic regions from Achlya bisexualis (Oomycota) and Costaria costata (Chromophyta). , 1991, Journal of molecular evolution.
[58] Detlef D. Leipe,et al. The stramenopiles from a molecular perspective 16S-like rRNA sequences from Labyrinthuloides minuta and Cafeteria roenbergensis , 1994 .
[59] N. Saitou,et al. The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.
[60] R De Wachter,et al. RnaViz, a program for the visualisation of RNA secondary structure. , 1997, Nucleic acids research.
[61] J. Palmer,et al. The Origin and Evolution of Plastids and Their Genomes , 1998 .
[62] T. Cavalier-smith,et al. Thraustochytrids are Chromists, not Fungi: 18s rRNA Signatures of Heterokonta , 1994 .
[63] R. Andersen,et al. Phylogenetic relationships of the Raphidophyceae and Xanthophyceae as inferred from nucleotide sequences of the 18S ribosomal RNA gene. , 1997, American journal of botany.
[64] H Philippe,et al. Phylogeny of eukaryotes based on ribosomal RNA: long-branch attraction and models of sequence evolution. , 2000, Molecular biology and evolution.
[65] G. McFadden,et al. The miniaturized nuclear genome of eukaryotic endosymbiont contains genes that overlap, genes that are cotranscribed, and the smallest known spliceosomal introns. , 1996, Proceedings of the National Academy of Sciences of the United States of America.
[66] R. Andersen,et al. PHYLOGENETIC AFFINITIES OF THE SARCINOCHRYSIDALES AND CHRYSOMERIDALES (HETEROKONTA) BASED ON ANALYSES OF MOLECULAR AND COMBINED DATA 1 , 1997 .
[67] T. Cavalier-smith,et al. 18S rRNA sequence of Heterosigma carterae (Raphidophyceae), and the phylogeny of heterokont algae (Ochrophyta) , 1996 .
[68] T. Cavalier-smith,et al. Chimeric conundra: are nucleomorphs and chromists monophyletic or polyphyletic? , 1994, Proceedings of the National Academy of Sciences of the United States of America.
[69] R. Andersen,et al. A MOLECULAR PHYLOGENY OF THE HETEROKONT ALGAE BASED ON ANALYSES OF CHLOROPLAST‐ENCODED rbcL SEQUENCE DATA 1 , 1997 .
[70] D. Spencer,et al. Cryptomonad algae are evolutionary chimaeras of two phylogenetically distinct unicellular eukaryotes , 1991, Nature.
[71] D. Hibberd,et al. Eustigmatophyceae—a New Algal Class with Unique Organization of the Motile Cell , 1970, Nature.
[72] S. Chapelle,et al. Structure of the large ribosomal subunit RNA of Phytophthora megasperma, and phylogeny of the oomycetes , 1994, FEBS letters.
[73] Y. van de Peer,et al. Construction of evolutionary distance trees with TREECON for Windows: accounting for variation in nucleotide substitution rate among sites. , 1997, Computer applications in the biosciences : CABIOS.
[74] Detlef D. Leipe,et al. 16S-like rDNA sequences from Developayella elegans, Labyrinthuloides haliotidis, and Proteromonas lacertae confirm that the stramenopiles are a primarily heterotrophic group , 1996 .