Advanced Spectral Classifiers for Hyperspectral Images: A review

Hyperspectral image classification has been a vibrant area of research in recent years. Given a set of observations, i.e., pixel vectors in a hyperspectral image, classification approaches try to allocate a unique label to each pixel vector. However, the classification of hyperspectral images is a challenging task for a number of reasons, such as the presence of redundant features, the imbalance among the limited number of available training samples, and the high dimensionality of the data.

[1]  Antonio J. Plaza,et al.  A Discontinuity Preserving Relaxation Scheme for Spectral–Spatial Hyperspectral Image Classification , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[2]  Xinbo Gao,et al.  Efficient Multiple-Feature Learning-Based Hyperspectral Image Classification With Limited Training Samples , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[3]  Antonio J. Plaza,et al.  Hyperspectral Image Segmentation Using a New Bayesian Approach With Active Learning , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[4]  David A. Landgrebe,et al.  Signal Theory Methods in Multispectral Remote Sensing , 2003 .

[5]  Lutz Prechelt,et al.  Automatic early stopping using cross validation: quantifying the criteria , 1998, Neural Networks.

[6]  Hui Liu,et al.  Multispectral image edge detection via Clifford gradient , 2012, Science China Information Sciences.

[7]  Anil K. Jain,et al.  Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Jon Atli Benediktsson,et al.  Statistical methods and neural network approaches for classification of data from multiple sources , 1991 .

[9]  Qihao Weng,et al.  A survey of image classification methods and techniques for improving classification performance , 2007 .

[10]  Pascal Vincent,et al.  Representation Learning: A Review and New Perspectives , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Mohammad Bagher Menhaj,et al.  Training feedforward networks with the Marquardt algorithm , 1994, IEEE Trans. Neural Networks.

[12]  Gustavo Camps-Valls,et al.  Semisupervised Remote Sensing Image Classification With Cluster Kernels , 2009, IEEE Geoscience and Remote Sensing Letters.

[13]  Wai Keung Wong,et al.  Sparse Alignment for Robust Tensor Learning , 2014, IEEE Transactions on Neural Networks and Learning Systems.

[14]  Liangpei Zhang,et al.  High-Resolution Image Classification Integrating Spectral-Spatial-Location Cues by Conditional Random Fields , 2016, IEEE Transactions on Image Processing.

[15]  Jams L. Cushnie The interactive effect of spatial resolution and degree of internal variability within land-cover types on classification accuracies , 1987 .

[16]  Peijun Du,et al.  Hyperspectral Remote Sensing Image Classification Based on Rotation Forest , 2014, IEEE Geoscience and Remote Sensing Letters.

[17]  M. Pal,et al.  Random forests for land cover classification , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[18]  C. Woodcock,et al.  The factor of scale in remote sensing , 1987 .

[19]  Guang-Bin Huang,et al.  Learning capability and storage capacity of two-hidden-layer feedforward networks , 2003, IEEE Trans. Neural Networks.

[20]  Yiwen Sun,et al.  Three-dimensional Gabor feature extraction for hyperspectral imagery classification using a memetic framework , 2015, Inf. Sci..

[21]  Jason Weston,et al.  Semisupervised Neural Networks for Efficient Hyperspectral Image Classification , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[22]  Farid Melgani,et al.  Nearest Neighbor Classification of Remote Sensing Images With the Maximal Margin Principle , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[23]  Jon Atli Benediktsson,et al.  Feature Selection Based on Hybridization of Genetic Algorithm and Particle Swarm Optimization , 2015, IEEE Geoscience and Remote Sensing Letters.

[24]  Chee Kheong Siew,et al.  Extreme learning machine: RBF network case , 2004, ICARCV 2004 8th Control, Automation, Robotics and Vision Conference, 2004..

[25]  John A. Richards,et al.  Analysis of remotely sensed data: the formative decades and the future , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[26]  Fabio Del Frate,et al.  Use of Neural Networks for Automatic Classification From High-Resolution Images , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[27]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.

[28]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[29]  Jon Atli Benediktsson,et al.  Generalized Composite Kernel Framework for Hyperspectral Image Classification , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[30]  T.,et al.  Training Feedforward Networks with the Marquardt Algorithm , 2004 .

[31]  David A. Landgrebe,et al.  A survey of decision tree classifier methodology , 1991, IEEE Trans. Syst. Man Cybern..

[32]  Jonathan Cheung-Wai Chan,et al.  Evaluation of random forest and adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery , 2008 .

[33]  Jun Zhou,et al.  Hyperspectral Image Classification Based on Structured Sparse Logistic Regression and Three-Dimensional Wavelet Texture Features , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[34]  Antonio J. Plaza,et al.  A Subspace-Based Multinomial Logistic Regression for Hyperspectral Image Classification , 2014, IEEE Geoscience and Remote Sensing Letters.

[35]  M. Friedl,et al.  An Overview of Uncertainty in Optical Remotely Sensed Data for Ecological Applications , 2001 .

[36]  Xing Zhao,et al.  Spectral–Spatial Classification of Hyperspectral Data Based on Deep Belief Network , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[37]  Erzsébet Merényi,et al.  Classification of hyperspectral imagery with neural networks: comparison to conventional tools , 2014, EURASIP Journal on Advances in Signal Processing.

[38]  Guillermo Sapiro,et al.  Learning Discriminative Sparse Representations for Modeling, Source Separation, and Mapping of Hyperspectral Imagery , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[39]  L. Breiman Arcing classifier (with discussion and a rejoinder by the author) , 1998 .

[40]  Johannes R. Sveinsson,et al.  Random forest classifiers for hyperspectral data , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..

[41]  E. Wegman Hyperdimensional Data Analysis Using Parallel Coordinates , 1990 .

[42]  Johannes R. Sveinsson,et al.  Random Forest Classification of Remote Sensing Data , 2006 .

[43]  Johannes R. Sveinsson,et al.  Multiple classifiers applied to multisource remote sensing data , 2002, IEEE Trans. Geosci. Remote. Sens..

[44]  Guang-Bin Huang,et al.  Extreme Learning Machine for Multilayer Perceptron , 2016, IEEE Transactions on Neural Networks and Learning Systems.

[45]  Yicong Zhou,et al.  Extreme Learning Machine With Composite Kernels for Hyperspectral Image Classification , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[46]  Zhen Ji,et al.  Edge-Preserving Texture Suppression Filter Based on Joint Filtering Schemes , 2013, IEEE Transactions on Multimedia.

[47]  Luis Gómez-Chova,et al.  Semisupervised Image Classification With Laplacian Support Vector Machines , 2008, IEEE Geoscience and Remote Sensing Letters.

[48]  Qiong Jackson,et al.  Adaptive Bayesian contextual classification based on Markov random fields , 2002, IEEE Trans. Geosci. Remote. Sens..

[49]  L.L.F. Janssen,et al.  Accuracy assessment of satellite derived land - cover data : a review , 1994 .

[50]  P. Swain,et al.  Neural Network Approaches Versus Statistical Methods In Classification Of Multisource Remote Sensing Data , 1990 .

[51]  Joydeep Ghosh,et al.  Investigation of the random forest framework for classification of hyperspectral data , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[52]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[53]  Lorenzo Bruzzone,et al.  Classification of hyperspectral remote sensing images with support vector machines , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[54]  Paul M. Mather,et al.  Some issues in the classification of DAIS hyperspectral data , 2006 .

[55]  Jon Atli Benediktsson,et al.  Multiple Feature Learning for Hyperspectral Image Classification , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[56]  Carl W. Ramm,et al.  Correct Formation of the Kappa Coefficient of Agreement , 1987 .

[57]  Timothy A. Warner,et al.  Kernel-based extreme learning machine for remote-sensing image classification , 2013 .

[58]  Gérard Biau,et al.  Analysis of a Random Forests Model , 2010, J. Mach. Learn. Res..

[59]  Mario Chica-Olmo,et al.  An assessment of the effectiveness of a random forest classifier for land-cover classification , 2012 .

[60]  Chee Kheong Siew,et al.  Extreme learning machine: Theory and applications , 2006, Neurocomputing.

[61]  Guang-Bin Huang,et al.  Trends in extreme learning machines: A review , 2015, Neural Networks.

[62]  Jennifer L. Dungan,et al.  Toward a Comprehensive View of Uncertainty in Remote Sensing Analysis , 2006 .

[63]  Carlo Gatta,et al.  Unsupervised Deep Feature Extraction for Remote Sensing Image Classification , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[64]  Xizhao Wang,et al.  Learning from big data with uncertainty - editorial , 2015, J. Intell. Fuzzy Syst..

[65]  D. Böhning Multinomial logistic regression algorithm , 1992 .

[66]  Carlos D. Castillo,et al.  Enhanced duckweed detection using bootstrapped SVM classification on medium resolution RGB MODIS imagery , 2008 .

[67]  Yang Hong,et al.  A back - propagation neural network for mineralogical mapping from AVIRIS data , 1997 .

[68]  Liangpei Zhang,et al.  Scene Classification Based on the Multifeature Fusion Probabilistic Topic Model for High Spatial Resolution Remote Sensing Imagery , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[69]  Lawrence Carin,et al.  Sparse multinomial logistic regression: fast algorithms and generalization bounds , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[70]  Lorenzo Bruzzone,et al.  Kernel-based methods for hyperspectral image classification , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[71]  D. R. Cutler,et al.  Utah State University From the SelectedWorks of , 2017 .

[72]  Russell G. Congalton,et al.  A review of assessing the accuracy of classifications of remotely sensed data , 1991 .

[73]  David A. Landgrebe,et al.  The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon , 1994, IEEE Trans. Geosci. Remote. Sens..

[74]  Gabriele Moser,et al.  Multimodal Classification of Remote Sensing Images: A Review and Future Directions , 2015, Proceedings of the IEEE.

[75]  Guang-Bin Huang,et al.  An Insight into Extreme Learning Machines: Random Neurons, Random Features and Kernels , 2014, Cognitive Computation.

[76]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[77]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[78]  Jon Atli Benediktsson,et al.  Recent Advances in Techniques for Hyperspectral Image Processing , 2009 .

[79]  Paul M. Mather,et al.  An assessment of the effectiveness of decision tree methods for land cover classification , 2003 .

[80]  Antonio J. Plaza,et al.  This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 1 Spectral–Spatial Hyperspectral Image Segmentation Using S , 2022 .

[81]  Liang Xiao,et al.  Supervised Spectral–Spatial Hyperspectral Image Classification With Weighted Markov Random Fields , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[82]  Qian Du,et al.  Optimizing extreme learning machine for hyperspectral image classification , 2015 .

[83]  Antonio J. Plaza,et al.  Spectral–Spatial Classification of Hyperspectral Data Using Local and Global Probabilities for Mixed Pixel Characterization , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[84]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[85]  Mahesh Pal Extreme‐learning‐machine‐based land cover classification , 2008, ArXiv.

[86]  Jon Atli Benediktsson,et al.  A Survey on Spectral–Spatial Classification Techniques Based on Attribute Profiles , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[87]  Jon Atli Benediktsson,et al.  A Novel Feature Selection Approach Based on FODPSO and SVM , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[88]  Jon Atli Benediktsson,et al.  Advances in Spectral-Spatial Classification of Hyperspectral Images , 2013, Proceedings of the IEEE.

[89]  Gang Wang,et al.  Deep Learning-Based Classification of Hyperspectral Data , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[90]  David Menotti,et al.  Combining Multiple Classification Methods for Hyperspectral Data Interpretation , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[91]  Ping Zhong,et al.  Jointly Learning the Hybrid CRF and MLR Model for Simultaneous Denoising and Classification of Hyperspectral Imagery , 2014, IEEE Transactions on Neural Networks and Learning Systems.

[92]  Martin Fodslette Meiller A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning , 1993 .

[93]  J. R. Sveinsson,et al.  Mapping of hyperspectral AVIRIS data using machine-learning algorithms , 2009 .

[94]  Yunjie Zhang,et al.  The Global Fuzzy C-Means Clustering Algorithm , 2006, 2006 6th World Congress on Intelligent Control and Automation.

[95]  Jun Li,et al.  ${{\rm E}^{2}}{\rm LMs}$ : Ensemble Extreme Learning Machines for Hyperspectral Image Classification , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[96]  Sayan Mukherjee,et al.  Choosing Multiple Parameters for Support Vector Machines , 2002, Machine Learning.

[97]  Giles M. Foody,et al.  Status of land cover classification accuracy assessment , 2002 .

[98]  Ping Zhong,et al.  Learning Conditional Random Fields for Classification of Hyperspectral Images , 2010, IEEE Transactions on Image Processing.

[99]  Peng Zhang,et al.  Dynamic Learning of SMLR for Feature Selection and Classification of Hyperspectral Data , 2008, IEEE Geoscience and Remote Sensing Letters.

[100]  C. Brodley,et al.  Decision tree classification of land cover from remotely sensed data , 1997 .

[101]  Farid Melgani,et al.  Toward an Optimal SVM Classification System for Hyperspectral Remote Sensing Images , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[102]  Jian-Huang Lai,et al.  Ideal regularization for learning kernels from labels , 2014, Neural Networks.

[103]  Hongming Zhou,et al.  Extreme Learning Machine for Regression and Multiclass Classification , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[104]  Xiuping Jia,et al.  Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[105]  John A. Richards,et al.  Cluster-space representation for hyperspectral data classification , 2002, IEEE Trans. Geosci. Remote. Sens..

[106]  Kurt Hornik,et al.  Approximation capabilities of multilayer feedforward networks , 1991, Neural Networks.

[107]  Jungho Im,et al.  Support vector machines in remote sensing: A review , 2011 .

[108]  Jon Atli Benediktsson,et al.  Conjugate-gradient neural networks in classification of multisource and very-high-dimensional remote sensing data , 1993 .

[109]  Jon Atli Benediktsson,et al.  Kernel Principal Component Analysis for the Classification of Hyperspectral Remote Sensing Data over Urban Areas , 2009, EURASIP J. Adv. Signal Process..

[110]  Giles M. Foody,et al.  A relative evaluation of multiclass image classification by support vector machines , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[111]  Yansheng Li,et al.  Unsupervised Spectral–Spatial Feature Learning With Stacked Sparse Autoencoder for Hyperspectral Imagery Classification , 2015, IEEE Geoscience and Remote Sensing Letters.

[112]  J. Bezdek,et al.  FCM: The fuzzy c-means clustering algorithm , 1984 .

[113]  Trac D. Tran,et al.  Hyperspectral Image Classification Using Dictionary-Based Sparse Representation , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[114]  Antonio J. Plaza,et al.  This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 1 Spectral–Spatial Classification of Hyperspectral Data Usi , 2022 .

[115]  Antonio J. Plaza,et al.  Semisupervised Hyperspectral Image Segmentation Using Multinomial Logistic Regression With Active Learning , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[116]  P. C. Smits,et al.  QUALITY ASSESSMENT OF IMAGE CLASSIFICATION ALGORITHMS FOR LAND-COVER MAPPING , 1999 .

[117]  Saurabh Prasad,et al.  Locality Preserving Composite Kernel Feature Extraction for Multi-Source Geospatial Image Analysis , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[118]  Pascal Vincent,et al.  Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion , 2010, J. Mach. Learn. Res..

[119]  Seungjin Choi,et al.  Stacked Denoising Autoencoders for Face Pose Normalization , 2013, ICONIP.

[120]  David A. Landgrebe,et al.  Supervised classification in high-dimensional space: geometrical, statistical, and asymptotical properties of multivariate data , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[121]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[122]  Ping Zhong,et al.  An MRF Model-Based Active Learning Framework for the Spectral-Spatial Classification of Hyperspectral Imagery , 2015, IEEE Journal of Selected Topics in Signal Processing.

[123]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machine Classifiers , 1999, Neural Processing Letters.

[124]  Shin'ichi Tamura,et al.  Capabilities of a four-layered feedforward neural network: four layers versus three , 1997, IEEE Trans. Neural Networks.

[125]  Chih-Jen Lin,et al.  Asymptotic Behaviors of Support Vector Machines with Gaussian Kernel , 2003, Neural Computation.

[126]  Alexandros Iosifidis,et al.  On the kernel Extreme Learning Machine classifier , 2015, Pattern Recognit. Lett..

[127]  Liangpei Zhang,et al.  An Adaptive Artificial Immune Network for Supervised Classification of Multi-/Hyperspectral Remote Sensing Imagery , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[128]  Bo Du,et al.  Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the Art , 2016, IEEE Geoscience and Remote Sensing Magazine.

[129]  Jon Atli Benediktsson,et al.  A Novel Evolutionary Swarm Fuzzy Clustering Approach for Hyperspectral Imagery , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.