Copula directional dependence of discrete time series marginals

Abstract To understand the dynamic relationship of discrete time series processes, we adopted copula directional dependence via beta regression model applied with generalized autoregressive conditional heteroscedasticity (INGARCH) marginals. To validate the proposed method, we completed simulations of two INGARCH processes from asymmetric bivariate copula function with members such as Gaussian and Plackett copula functions. The simulations show that the proposed method is consistent for deriving directional dependent measurements regardless of the choice of the symmetric members. The proposed method is applied to the bivariate discrete time series data of the monthly counts of sandstorms and dust haze phenomena in Saudi Arabia.

[1]  Jong-Min Kim,et al.  Directional Dependence of Genes Using Survival Truncated FGM Type Modification Copulas , 2009, Commun. Stat. Simul. Comput..

[2]  F. Durante Construction of non-exchangeable bivariate distribution functions , 2009 .

[3]  M. Hagmann,et al.  Significance tests to determine the direction of effects in linear regression models. , 2015, The British journal of mathematical and statistical psychology.

[4]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[5]  Fukang Zhu A negative binomial integer‐valued GARCH model , 2010 .

[6]  N. Diawara,et al.  Statistical pattern recognition using Gaussian copula , 2015 .

[7]  C. Varin,et al.  Beta regression for time series analysis of bounded data, with application to Canada Google Flu Trends. , 2014, 1404.3533.

[8]  P. McCullagh,et al.  Generalized Linear Models , 1972, Predictive Analytics.

[9]  Jinhwa Kim,et al.  New Approach of Directional Dependence in Exchange Markets Using Generalized FGM Copula Function , 2008, Commun. Stat. Simul. Comput..

[10]  Insuk Sohn,et al.  BMC Bioinformatics BioMed Central Methodology article A copula method for modeling directional dependence of genes , 2022 .

[11]  C. Granger Investigating Causal Relations by Econometric Models and Cross-Spectral Methods , 1969 .

[12]  Jong-Min Kim,et al.  Analysis of directional dependence using asymmetric copula-based regression models , 2014 .

[13]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[14]  Engin A. Sungur A Note on Directional Dependence in Regression Setting , 2005 .

[15]  J. Cavanaugh,et al.  Partial Likelihood , 2018, Wiley StatsRef: Statistics Reference Online.

[16]  R. Shumway,et al.  Time Series Regression and Exploratory Data Analysis , 2011 .

[17]  Cathy W. S. Chen,et al.  Autoregressive conditional negative binomial model applied to over-dispersed time series of counts , 2016 .

[18]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[19]  Jong-Min Kim,et al.  Large asymmetry and directional dependence by using copula modeling to currency exchange rates , 2012, Model. Assist. Stat. Appl..

[20]  C. Granger Investigating causal relations by econometric models and cross-spectral methods , 1969 .

[21]  P. X. Song,et al.  Correlated data analysis : modeling, analytics, and applications , 2007 .

[22]  Richard A. Davis,et al.  Time Series: Theory and Methods , 2013 .

[23]  J. Wade Davis,et al.  Statistical Pattern Recognition , 2003, Technometrics.

[24]  David S. Stoffer,et al.  Time series analysis and its applications , 2000 .

[25]  C. Varin,et al.  Gaussian Copula Marginal Regression , 2012 .

[26]  Alain Latour,et al.  Integer‐Valued GARCH Process , 2006 .

[27]  Fokianos Konstantinos Statistical Analysis of Count Time Series Models: A GLM Perspective , 2015 .

[28]  W. Dunsmuir Generalized Linear Autoregressive Moving Average Models , 2015 .

[29]  R. Rigby,et al.  Generalized Autoregressive Moving Average Models , 2003 .

[30]  Bonnie K. Ray,et al.  Regression Models for Time Series Analysis , 2003, Technometrics.

[31]  M. Haugh,et al.  An Introduction to Copulas , 2016 .

[32]  Y. Sekine On Dust Storms , 1924 .

[33]  Richard A. Davis,et al.  A negative binomial model for time series of counts , 2009 .

[34]  S. Zeger,et al.  Markov regression models for time series: a quasi-likelihood approach. , 1988, Biometrics.

[35]  Benjamin Kedem,et al.  Partial Likelihood Inference For Time Series Following Generalized Linear Models , 2004 .

[36]  C. Czado,et al.  A mixed copula model for insurance claims and claim sizes , 2012 .

[37]  Roland Fried,et al.  tscount: An R package for analysis of count time series following generalized linear models , 2017 .

[38]  Philip Paolino,et al.  Maximum Likelihood Estimation of Models with Beta-Distributed Dependent Variables , 2001, Political Analysis.

[39]  C. Varin,et al.  Gaussian Copula Regression in R , 2017 .

[40]  K. Fokianos Count Time Series Models , 2012 .

[41]  Jong-Min Kim,et al.  The copula directional dependence by stochastic volatility models , 2019, Commun. Stat. Simul. Comput..

[42]  Jong-Min Kim,et al.  Directional dependence via Gaussian copula beta regression model with asymmetric GARCH marginals , 2017, Commun. Stat. Simul. Comput..

[43]  P. Embrechts,et al.  Dependence modeling with copulas , 2007 .

[44]  Konstantinos Fokianos,et al.  Log-linear Poisson autoregression , 2011, J. Multivar. Anal..

[45]  Eric R. Ziegel,et al.  Generalized Linear Models , 2002, Technometrics.