Reliable preconditioned iterative linear solvers for some numerical integrators

Implicit time-step numerical integrators for ordinary and evolutionary partial di erential equations need, at each step, the solution of linear algebraic equations that are unsymmetric and often large and sparse. Recently, a block preconditioner based on circulant approximations for the linear systems arising in the boundary value methods (BVMs) was introduced by the author. Here, some circulant approximations are compared and a further new type is considered. Numerical experiments are presented to check the e ectiveness of the various approximations that can be used in the underlying block preconditioner. Copyright ? 2001 John Wiley & Sons, Ltd.

[1]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[2]  S. Serra,et al.  Fast parallel solvers for elliptic problems , 1996 .

[3]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[4]  James G. Nagy,et al.  Preconditioned iterative regularization for Ill-posed problems , 1992 .

[5]  Raymond H. Chan,et al.  Conjugate Gradient Methods for Toeplitz Systems , 1996, SIAM Rev..

[6]  C. W. Gear,et al.  Iterative Solution of Linear Equations in ODE Codes , 1983 .

[7]  T. Chan,et al.  The Use of Iterative Linear-Equation Solvers in Codes for Large Systems of Stiff IVPs for ODEs , 1986 .

[8]  G. Strang A proposal for toeplitz matrix calculations , 1986 .

[9]  Eugene E. Tyrtyshnikov,et al.  Optimal and Superoptimal Circulant Preconditioners , 1992, SIAM J. Matrix Anal. Appl..

[10]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[11]  Stefano Serra,et al.  Asymptotic Results on the Spectra of Block Toeplitz Preconditioned Matrices , 1999 .

[12]  T. Chan An Optimal Circulant Preconditioner for Toeplitz Systems , 1988 .

[13]  Michael K. Ng,et al.  The Convergence Rate of Block Preconditioned Systems Arising from LMF-based ODE Codes , 2001 .

[14]  Raymond H. Chan,et al.  Circulant preconditioners for solving ordinary differential equations , 2001 .

[15]  Eugene E. Tyrtyshnikov,et al.  Circulant preconditioners with unbounded inverses , 1995 .

[16]  E. E. Tyrtyshnikov A unifying approach to some old and new theorems on distribution and clustering , 1996 .

[17]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[18]  Tobin A. Driscoll,et al.  From Potential Theory to Matrix Iterations in Six Steps , 1998, SIAM Rev..

[19]  Anne Greenbaum,et al.  Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.

[20]  Stefano Serra Capizzano,et al.  Toeplitz Preconditioners Constructed from Linear Approximation Processes , 1999, SIAM J. Matrix Anal. Appl..

[21]  J. G. Verwer,et al.  Boundary value techniques for initial value problems in ordinary differential equations , 1983 .

[22]  Eugene E. Tyrtyshnikov,et al.  Which circulant preconditioner is better? , 1996, Math. Comput..

[23]  Raymond H. Chan,et al.  The Best Circulant Preconditioners for Hermitian Toeplitz Systems , 2000, SIAM J. Numer. Anal..

[24]  Daniele Bertaccini,et al.  A Circulant Preconditioner for the Systems of LMF-Based ODE Codes , 2000, SIAM J. Sci. Comput..