Comparative genomics of the ADA clade within the Nostocales.

[1]  Edward W. Davis,et al.  Complete genomes derived by directly sequencing freshwater bloom populations emphasize the significance of the genus level ADA clade within the Nostocales. , 2021, Harmful algae.

[2]  Cameron L.M. Gilchrist,et al.  clinker & clustermap.js: Automatic generation of gene cluster comparison figures , 2020, bioRxiv.

[3]  Chun-Xiang Hu,et al.  Comparative genomics reveals insights into cyanobacterial evolution and habitat adaptation , 2020, The ISME Journal.

[4]  Yi Yue,et al.  Evaluating metagenomics tools for genome binning with real metagenomic datasets and CAMI datasets , 2020, BMC Bioinformatics.

[5]  J. Sassi,et al.  Recent Advances in the Photoautotrophic Metabolism of Cyanobacteria: Biotechnological Implications , 2020, Life.

[6]  Donovan H. Parks,et al.  A complete domain-to-species taxonomy for Bacteria and Archaea , 2020, Nature Biotechnology.

[7]  K. Sivonen,et al.  Phylogenomic Analysis of Secondary Metabolism in the Toxic Cyanobacterial Genera Anabaena, Dolichospermum and Aphanizomenon , 2020, Toxins.

[8]  S. Chisholm,et al.  Frequency of mispackaging of Prochlorococcus DNA by cyanophage , 2020, bioRxiv.

[9]  A. Méjean,et al.  Biosynthesis of Anatoxins in Cyanobacteria: Identification of the Carboxy-anatoxins as the Penultimate Biosynthetic Intermediates. , 2020, Journal of natural products.

[10]  S. Montgomery,et al.  A Bioinformatic Analysis of Integrative Mobile Genetic Elements Highlights Their Role in Bacterial Adaptation. , 2019, Cell host & microbe.

[11]  Donovan H Parks,et al.  GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database , 2019, Bioinform..

[12]  J. Banfield,et al.  Accurate and complete genomes from metagenomes , 2019, bioRxiv.

[13]  S. Lee,et al.  antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline , 2019, Nucleic Acids Res..

[14]  B. Maier,et al.  Type IV pili: dynamics, biophysics and functional consequences , 2019, Nature Reviews Microbiology.

[15]  Hiroyuki Ogata,et al.  KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold , 2019, bioRxiv.

[16]  W. Hess,et al.  Insight into the genome and brackish water adaptation strategies of toxic and bloom-forming Baltic Sea Dolichospermum sp. UHCC 0315 , 2019, Scientific Reports.

[17]  K. Holmfeldt,et al.  Genomic Characterization of Cyanophage vB_AphaS-CL131 Infecting Filamentous Diazotrophic Cyanobacterium Aphanizomenon flos-aquae Reveals Novel Insights into Virus-Bacterium Interactions , 2018, Applied and Environmental Microbiology.

[18]  Rick L. Stevens,et al.  KBase: The United States Department of Energy Systems Biology Knowledgebase , 2018, Nature Biotechnology.

[19]  T. Dreher,et al.  A closely-related clade of globally distributed bloom-forming cyanobacteria within the Nostocales. , 2018, Harmful algae.

[20]  H. Paerl,et al.  Cyanobacterial blooms , 2018, Nature Reviews Microbiology.

[21]  Daniel Gautheret,et al.  CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins , 2018, Nucleic Acids Res..

[22]  D. Gatherer,et al.  Correlation between bacterial G+C content, genome size and the G+C content of associated plasmids and bacteriophages , 2018, Microbial genomics.

[23]  P. Permi,et al.  Discovery of a Pederin Family Compound in a Nonsymbiotic Bloom-Forming Cyanobacterium. , 2018, ACS chemical biology.

[24]  Lukas Zimmermann,et al.  A Completely Reimplemented MPI Bioinformatics Toolkit with a New HHpred Server at its Core. , 2017, Journal of molecular biology.

[25]  A. Phillippy,et al.  High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries , 2017, Nature Communications.

[26]  Haixu Tang,et al.  ISEScan: automated identification of insertion sequence elements in prokaryotic genomes , 2017, Bioinform..

[27]  M. Touchon,et al.  The chromosomal organization of horizontal gene transfer in bacteria , 2017, Nature Communications.

[28]  Benjamin H. Good,et al.  The Dynamics of Molecular Evolution Over 60,000 Generations , 2017, Nature.

[29]  M. F. Fiore,et al.  A Metagenomic Approach to Cyanobacterial Genomics , 2017, Front. Microbiol..

[30]  Matthew R. Laird,et al.  IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets , 2017, Nucleic Acids Res..

[31]  S. Abedon,et al.  Lysogeny in nature: mechanisms, impact and ecology of temperate phages , 2017, The ISME Journal.

[32]  Eric P. Nawrocki,et al.  NCBI prokaryotic genome annotation pipeline , 2016, Nucleic acids research.

[33]  Ryan S. Mueller,et al.  Structural and functional analysis of the finished genome of the recently isolated toxic Anabaena sp. WA102 , 2016, BMC Genomics.

[34]  David S. Wishart,et al.  PHASTER: a better, faster version of the PHAST phage search tool , 2016, Nucleic Acids Res..

[35]  Brian C. Thomas,et al.  A new view of the tree of life , 2016, Nature Microbiology.

[36]  A. Ballot,et al.  A review of the phylogeny, ecology and toxin production of bloom-forming Aphanizomenon spp. and related species within the Nostocales (cyanobacteria). , 2016, Harmful algae.

[37]  S. Giglio,et al.  Biochemistry and genetics of taste- and odor-producing cyanobacteria. , 2016, Harmful algae.

[38]  T. Dreher,et al.  An overview of diversity, occurrence, genetics and toxin production of bloom-forming Dolichospermum (Anabaena) species. , 2016, Harmful algae.

[39]  Sarah E Ongley,et al.  The genetics, biosynthesis and regulation of toxic specialized metabolites of cyanobacteria. , 2016, Harmful algae.

[40]  E. Dittmann,et al.  Natural Product Biosynthetic Diversity and Comparative Genomics of the Cyanobacteria. , 2015, Trends in microbiology.

[41]  Connor T. Skennerton,et al.  CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes , 2015, Genome research.

[42]  Matthew B. Sullivan,et al.  VirSorter: mining viral signal from microbial genomic data , 2015, PeerJ.

[43]  Patrick L. Thompson,et al.  Acceleration of cyanobacterial dominance in north temperate-subarctic lakes during the Anthropocene. , 2015, Ecology letters.

[44]  S. Zimmerly,et al.  An Unexplored Diversity of Reverse Transcriptases in Bacteria , 2015, Microbiology spectrum.

[45]  G. Alzbutas,et al.  Draft Genome Sequence of the Cyanobacterium Aphanizomenon flos-aquae Strain 2012/KM1/D3, Isolated from the Curonian Lagoon (Baltic Sea) , 2015, Genome Announcements.

[46]  S. Chisholm,et al.  Prochlorococcus: the structure and function of collective diversity , 2014, Nature Reviews Microbiology.

[47]  C. Kerfeld,et al.  Phylum-wide comparative genomics unravel the diversity of secondary metabolism in Cyanobacteria , 2014, BMC Genomics.

[48]  Hervé Ménager,et al.  MacSyFinder: A Program to Mine Genomes for Molecular Systems with an Application to CRISPR-Cas Systems , 2014, PloS one.

[49]  P. Permi,et al.  Hassallidins, antifungal glycolipopeptides, are widespread among cyanobacteria and are the end-product of a nonribosomal pathway , 2014, Proceedings of the National Academy of Sciences.

[50]  Fei Deng,et al.  Freshwater cyanophages , 2013, Virologica Sinica.

[51]  P. Permi,et al.  Genome mining expands the chemical diversity of the cyanobactin family to include highly modified linear peptides. , 2013, Chemistry & biology.

[52]  Alexandra Calteau,et al.  A Tribute to Disorder in the Genome of the Bloom-Forming Freshwater Cyanobacterium Microcystis aeruginosa , 2013, PloS one.

[53]  H. Paerl,et al.  Harmful Cyanobacterial Blooms: Causes, Consequences, and Controls , 2013, Microbial Ecology.

[54]  Matt Nolan,et al.  Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing , 2012, Proceedings of the National Academy of Sciences.

[55]  Zhijie Li,et al.  Genome-derived insights into the biology of the hepatotoxic bloom-forming cyanobacterium Anabaena sp. strain 90 , 2012, BMC Genomics.

[56]  F. Pfeifer,et al.  Distribution, formation and regulation of gas vesicles , 2012, Nature Reviews Microbiology.

[57]  P. Permi,et al.  Anabaenolysins, Novel Cytolytic Lipopeptides from Benthic Anabaena Cyanobacteria , 2012, PloS one.

[58]  Sergey I. Nikolenko,et al.  SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing , 2012, J. Comput. Biol..

[59]  T. Sano,et al.  Molecular Basis and Phylogenetic Implications of Deoxycylindrospermopsin Biosynthesis in the Cyanobacterium Raphidiopsis curvata , 2012, Applied and Environmental Microbiology.

[60]  Li Wu,et al.  Database for bacterial group II introns , 2011, Nucleic Acids Res..

[61]  E. Rizzi,et al.  Anatoxin-a Synthetase Gene Cluster of the Cyanobacterium Anabaena sp. Strain 37 and Molecular Methods To Detect Potential Producers , 2011, Applied and Environmental Microbiology.

[62]  K. Sivonen,et al.  Genome Mining Demonstrates the Widespread Occurrence of Gene Clusters Encoding Bacteriocins in Cyanobacteria , 2011, PloS one.

[63]  Brian C. Thomas,et al.  EMIRGE: reconstruction of full-length ribosomal genes from microbial community short read sequencing data , 2011, Genome Biology.

[64]  M. Vingron,et al.  Genome-wide comparison of cyanobacterial transposable elements, potential genetic diversity indicators. , 2010, Gene.

[65]  Andy Purvis,et al.  Selectivity in Mammalian Extinction Risk and Threat Types: a New Measure of Phylogenetic Signal Strength in Binary Traits , 2010, Conservation biology : the journal of the Society for Conservation Biology.

[66]  K. Jakobsen,et al.  The cylindrospermopsin gene cluster of Aphanizomenon sp. strain 10E6: organization and recombination. , 2010, Microbiology.

[67]  N. Perna,et al.  progressiveMauve: Multiple Genome Alignment with Gene Gain, Loss and Rearrangement , 2010, PloS one.

[68]  M. Howard,et al.  Pushing and Pulling in Prokaryotic DNA Segregation , 2010, Cell.

[69]  K. Sivonen,et al.  Two alternative starter modules for the non-ribosomal biosynthesis of specific anabaenopeptin variants in Anabaena (Cyanobacteria). , 2010, Chemistry & biology.

[70]  K. Sivonen,et al.  Cyanobactins—ribosomal cyclic peptides produced by cyanobacteria , 2010, Applied Microbiology and Biotechnology.

[71]  K. Sivonen,et al.  Highly Diverse Cyanobactins in Strains of the Genus Anabaena , 2009, Applied and Environmental Microbiology.

[72]  E. Dittmann,et al.  Plasticity and Evolution of Aeruginosin Biosynthesis in Cyanobacteria , 2009, Applied and Environmental Microbiology.

[73]  A. Danchin,et al.  Organised Genome Dynamics in the Escherichia coli Species Results in Highly Diverse Adaptive Paths , 2009, PLoS genetics.

[74]  V. Kunin,et al.  A Bioinformatician's Guide to Metagenomics , 2008, Microbiology and Molecular Biology Reviews.

[75]  D. Crook,et al.  Genomic islands: tools of bacterial horizontal gene transfer and evolution , 2008, FEMS microbiology reviews.

[76]  R. Kellmann,et al.  Identification of a Saxitoxin Biosynthesis Gene with a History of Frequent Horizontal Gene Transfers , 2008, Journal of Molecular Evolution.

[77]  J. Paul Prophages in marine bacteria: dangerous molecular time bombs or the key to survival in the seas? , 2008, The ISME Journal.

[78]  B. Neilan,et al.  Characterization of the Gene Cluster Responsible for Cylindrospermopsin Biosynthesis , 2007, Applied and Environmental Microbiology.

[79]  Ulrich Dobrindt,et al.  Role of pathogenicity island‐associated integrases in the genome plasticity of uropathogenic Escherichia coli strain 536 , 2006, Molecular microbiology.

[80]  D. Kehoe,et al.  Responding to color: the regulation of complementary chromatic adaptation. , 2006, Annual review of plant biology.

[81]  R. Overbeek,et al.  Comparative Genomics of NAD Biosynthesis in Cyanobacteria , 2006, Journal of bacteriology.

[82]  Laura S. Frost,et al.  Mobile genetic elements: the agents of open source evolution , 2005, Nature Reviews Microbiology.

[83]  A. Lambowitz,et al.  Mobile group II introns. , 2004, Annual review of genetics.

[84]  J. Vaitomaa,et al.  Phylogenetic evidence for the early evolution of microcystin synthesis. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[85]  Marti J. Anderson,et al.  A new method for non-parametric multivariate analysis of variance in ecology , 2001 .

[86]  R. Haselkorn,et al.  Genes encoding synthetases of cyclic depsipeptides, anabaenopeptilides, in Anabaena strain 90 , 2000, Molecular microbiology.

[87]  J. Fuhrman Marine viruses and their biogeochemical and ecological effects , 1999, Nature.

[88]  M. Simon,et al.  Significance of bacteriophages for controlling bacterioplankton growth in a mesotrophic lake , 1995, Applied and environmental microbiology.

[89]  A. Muro-Pastor,et al.  Transfer of a genetic marker from a megaplasmid of Anabaena sp. strain PCC 7120 to a megaplasmid of a different Anabaena strain , 1994, Journal of bacteriology.

[90]  P. G. Arnison,et al.  Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. , 2013, Natural product reports.

[91]  Elke Dittmann,et al.  Cyanobacterial toxins: biosynthetic routes and evolutionary roots. , 2013, FEMS microbiology reviews.

[92]  Susumu Goto,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 2000, Nucleic Acids Res..