Bayesian Demand Calibration for Dynamic Traffic Simulations

We present an operational framework for the calibration of demand models for dynamic traffic simulations, where calibration refers to the estimation of a structurally predefined model's parameters from real data. Our focus is on disaggregate simulators that represent every traveler individually. We calibrate, also at an individual level, arbitrary choice dimensions within a Bayesian framework, where the analyst's prior knowledge is represented by the dynamic traffic simulator itself and the measurements are comprised of time-dependent traffic counts. The approach is equally applicable to an equilibrium-based planning model and to a telematics model of spontaneous and imperfectly informed drivers. It is based on consistent mathematical arguments, yet it is applicable in a purely simulation-based environment and, as our experimental results show, is capable of handling large scenarios.

[1]  Michael J. Maher,et al.  A bi-level programming approach for trip matrix estimation and traffic control problems with stochastic user equilibrium link flows , 2001 .

[2]  Martin L. Hazelton,et al.  The Dynamics and equilibria of day-to-day traffic assignment models , 2003 .

[3]  K. Nagel,et al.  Generating complete all-day activity plans with genetic algorithms , 2005 .

[4]  Kai Nagel,et al.  The dynamics of iterated transportation simulations , 2000, ArXiv.

[5]  Hai Yang Heuristic algorithms for the bilevel origin-destination matrix estimation problem , 1995 .

[6]  Kai Nagel,et al.  An Improved Framework for Large-Scale Multi-Agent Sim- ulations of Travel Behavior , 2004 .

[7]  Ennio Cascetta,et al.  Dynamic Estimators of Origin-Destination Matrices Using Traffic Counts , 1993, Transp. Sci..

[8]  N. J. Van der Zijpp,et al.  Estimation of Origin-Destination Demand for Dynamic Assignment with Simultaneous Route and Departure Time Choice , 2001 .

[9]  K. Train Discrete Choice Methods with Simulation , 2003 .

[10]  Haris N. Koutsopoulos,et al.  NETWORK STATE ESTIMATION AND PREDICTION FOR REAL-TIME TRANSPORTATION MANAGEMENT APPLICATIONS , 2002 .

[11]  Hai Yang,et al.  Estimation of origin-destination matrices from link traffic counts on congested networks , 1992 .

[12]  Haris N. Koutsopoulos,et al.  Investigation of Route Guidance Generation Issues by Simulation with DynaMIT , 1999 .

[13]  Marcel Rieser,et al.  Effects of a Simple Mode Choice Model in a Large-Scale Agent-Based Transport Simulation , 2009 .

[14]  Sang Nguyen,et al.  A unified framework for estimating or updating origin/destination matrices from traffic counts , 1988 .

[15]  Maria Nadia Postorino,et al.  Fixed Point Approaches to the Estimation of O/D Matrices Using Traffic Counts on Congested Networks , 2001, Transp. Sci..

[16]  Gunnar Flötteröd,et al.  Behavioral calibration of a large-scale travel behavior microsimulation , 2009 .

[17]  Hani S. Mahmassani,et al.  A structural state space model for real-time traffic origin–destination demand estimation and prediction in a day-to-day learning framework , 2007 .

[18]  Moshe Ben-Akiva,et al.  Discrete Choice Models with Applications to Departure Time and Route Choice , 2003 .

[19]  Ronghui Liu,et al.  Doubly Dynamic Traffic Assignment , 2007 .

[20]  E. Cascetta,et al.  A DAY-TO-DAY AND WITHIN-DAY DYNAMIC STOCHASTIC ASSIGNMENT MODEL , 1991 .

[21]  Gunnar Flötteröd A general methodology and a free software for the demand calibration of DTA models , 2010 .

[22]  M. Bell STOCHASTIC USER EQUILIBRIUM ASSIGNMENT IN NETWORKS WITH QUEUES , 1995 .

[23]  E. Cascetta A stochastic process approach to the analysis of temporal dynamics in transportation networks , 1989 .

[24]  Henry X. Liu,et al.  Method of Successive Weighted Averages (MSWA) and Self-Regulated Averaging Schemes for Solving Stochastic User Equilibrium Problem , 2009 .

[25]  Moshe Ben-Akiva,et al.  Activity Based Travel Demand Model Systems , 1998 .

[26]  Michel Bierlaire,et al.  BIOGEME: a free package for the estimation of discrete choice models , 2003 .

[27]  E. Cascetta Estimation of trip matrices from traffic counts and survey data: A generalized least squares estimator , 1984 .

[28]  M. Bell,et al.  A TIME-DEPENDENT MULTI-CLASS PATH FLOW ESTIMATOR , 1996 .

[29]  Fabrice Marchal,et al.  Real Cases Applications of the Fully Dynamic METROPOLIS Tool-Box: An Advocacy for Large-Scale Mesoscopic Transportation Systems , 2002 .

[30]  H. Spiess A MAXIMUM LIKELIHOOD MODEL FOR ESTIMATING ORIGIN-DESTINATION MATRICES , 1987 .

[31]  Gunnar Flötteröd,et al.  Cadyts - a free calibration tool for dynamic traffic simulations , 2009 .

[32]  H. M. Zhang,et al.  Inferring origin–destination trip matrices with a decoupled GLS path flow estimator , 2005 .

[33]  M. Bell THE ESTIMATION OF ORIGIN-DESTINATION MATRICES BY CONSTRAINED GENERALISED LEAST SQUARES , 1991 .

[34]  M. Maher INFERENCES ON TRIP MATRICES FROM OBSERVATIONS ON LINK VOLUMES: A BAYESIAN STATISTICAL APPROACH , 1983 .

[35]  K. Nagel,et al.  Agent-based traffic assignment: going from trips to behavioral travelers , 2009 .

[36]  Kenneth E. Train,et al.  Discrete Choice Methods with Simulation , 2016 .

[37]  Marcel Rieser,et al.  Anwendung eines agentenbasierten Modells der Verkehrsnachfrage auf die Schweiz / Application of an agent-based model of travel demand to the case of car traffic in Switzerland , 2007 .

[38]  Michael G.H. Bell,et al.  Estimating Path Flows from Traffic Counts , 1999 .

[39]  Michael Bierlaire,et al.  The total demand scale: a new measure of quality for static and dynamic origin–destination trip tables , 2002 .

[40]  Ronghui Liu The DRACULA Dynamic Network Microsimulation Model , 2005 .

[41]  M. Ben-Akiva,et al.  Discrete choice analysis , 1989 .

[42]  Mark Bradley,et al.  Activity-Based Travel Forecasting Models in the United States: Progress since 1995 and Prospects for the Future , 2005 .

[43]  Henk J van Zuylen,et al.  The most likely trip matrix estimated from traffic counts , 1980 .

[44]  Ronghui Liu THE DRACULA DYNAMIC TRAFFIC NETWORK MICROSIMULATION MODEL , 2005 .

[45]  R. Sivanandan,et al.  A linear programming approach for synthesizing origin-destination trip tables from link traffic volumes , 1994 .

[46]  Francesco Ciari,et al.  Anwendung eines agentenbasierten Modells der Verkehrsnachfrage auf die Schweiz; ; Strassenverkehrstechnik; , 2009 .

[47]  Michel Bierlaire,et al.  Solving Noisy, Large-Scale Fixed-Point Problems and Systems of Nonlinear Equations , 2006, Transp. Sci..

[48]  Hanif D. Sherali,et al.  Estimation of origin–destination trip-tables based on a partial set of traffic link volumes , 2003 .

[49]  Anders Peterson,et al.  A heuristic for the bilevel origin-destination-matrix estimation problem , 2008 .

[50]  Michael G.H. Bell,et al.  A STOCHASTIC USER EQUILIBRIUM PATH FLOW ESTIMATOR , 1997 .

[51]  Carlos F. Daganzo,et al.  On Stochastic Models of Traffic Assignment , 1977 .

[52]  Gunnar Flötteröd Traffic State Estimation with Multi-Agent Simulations , 2008 .

[53]  Moshe E. Ben-Akiva,et al.  Alternative Approaches for Real-Time Estimation and Prediction of Time-Dependent Origin-Destination Flows , 2000, Transp. Sci..

[54]  Martin L. Hazelton,et al.  The Dynamics and Equilibria of Day-to-Day Assignment Models , 2003 .

[55]  Hani S. Mahmassani,et al.  Dynamic Network Traffic Assignment and Simulation Methodology for Advanced System Management Applications , 2001 .

[56]  Jon Alan Bottom,et al.  Consistent anticipatory route guidance , 2000 .

[57]  Michael Florian,et al.  Comparison of Three Methods for Dynamic Network Loading , 2001 .

[58]  Yosef Sheffi,et al.  Urban Transportation Networks: Equilibrium Analysis With Mathematical Programming Methods , 1985 .

[59]  Paul Waddell,et al.  Incorporating land use in metropolitan transportation planning , 2007 .

[60]  Michel Bierlaire,et al.  Improved estimation of travel demand from traffic counts by a new linearization of the network loading map , 2009 .

[61]  Taehyung Park,et al.  Estimation of dynamic origin-destination trip tables for a general network , 2001 .

[62]  R. Kitamura An evaluation of activity-based travel analysis , 1988 .

[63]  E. Cascetta,et al.  A MODIFIED LOGIT ROUTE CHOICE MODEL OVERCOMING PATH OVERLAPPING PROBLEMS. SPECIFICATION AND SOME CALIBRATION RESULTS FOR INTERURBAN NETWORKS , 1996 .

[64]  M. Bierlaire MEUSE: an origin-destination matrix estimator that exploits structure , 1995 .

[65]  Adrian E. Raftery,et al.  Assessing Uncertainty in Urban Simulations Using Bayesian Melding , 2007 .

[66]  Haris N. Koutsopoulos,et al.  Network State Estimation and Prediction for Real-Time Traffic Management , 2001 .

[67]  Der-Horng Lee,et al.  Uncoupled Method for Equilibrium-Based Linear Path Flow Estimator for Origin-Destination Trip Matrices , 2002 .

[68]  R. Kitamura APPLICATIONS OF MODELS OF ACTIVITY BEHAVIOR FOR ACTIVITY BASED DEMAND FORECASTING , 1997 .

[69]  Matthias Schmidt,et al.  Parallel DYNEMO: Meso-Scopic Traffic Flow Simulation on Large Networks , 2002 .