Common Molecular Pathways Mediate Long-Term Potentiation of Synaptic Excitation and Slow Synaptic Inhibition

[1]  Tyson A. Clark,et al.  Nova regulates brain-specific splicing to shape the synapse , 2005, Nature Genetics.

[2]  Robert B Darnell,et al.  Nova autoregulation reveals dual functions in neuronal splicing , 2005, The EMBO journal.

[3]  S. Russek,et al.  cAMP Response Element-Binding Protein, Activating Transcription Factor-4, and Upstream Stimulatory Factor Differentially Control Hippocampal GABABR1a and GABABR1b Subunit Gene Expression through Alternative Promoters , 2004, The Journal of Neuroscience.

[4]  S. Russek,et al.  Differential expression of γ‐aminobutyric acid type B receptor subunit mRNAs in the developing nervous system and receptor coupling to adenylyl cyclase in embryonic neurons , 2004, The Journal of comparative neurology.

[5]  Michael Häusser,et al.  A proportional but slower NMDA potentiation follows AMPA potentiation in LTP , 2004, Nature Neuroscience.

[6]  A. Ephrussi,et al.  Splicing of oskar RNA in the nucleus is coupled to its cytoplasmic localization , 2004, Nature.

[7]  M. Pangalos,et al.  Marlin-1, a Novel RNA-binding Protein Associates with GABA Receptors* , 2004, Journal of Biological Chemistry.

[8]  D. Debanne Information processing in the axon , 2004, Nature Reviews Neuroscience.

[9]  Y. Jan,et al.  Evolving potassium channels by means of yeast selection reveals structural elements important for selectivity. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[10]  A. J. Castiglioni,et al.  Cell-Specific Alternative Splicing Increases Calcium Channel Current Density in the Pain Pathway , 2004, Neuron.

[11]  Matthew L. Albert,et al.  Paraneoplastic neurological degenerations: keys to tumour immunity , 2004, Nature Reviews Cancer.

[12]  M. Hasselmo,et al.  Stimulation in Hippocampal Region CA1 in Behaving Rats Yields Long-Term Potentiation when Delivered to the Peak of Theta and Long-Term Depression when Delivered to the Trough , 2003, The Journal of Neuroscience.

[13]  M. Frotscher,et al.  Subcellular Localization of Metabotropic GABAB Receptor Subunits GABAB1a/b and GABAB2 in the Rat Hippocampus , 2003, The Journal of Neuroscience.

[14]  Marc W Howard,et al.  Theta and Gamma Oscillations during Encoding Predict Subsequent Recall , 2003, The Journal of Neuroscience.

[15]  Jernej Ule,et al.  CLIP Identifies Nova-Regulated RNA Networks in the Brain , 2003, Science.

[16]  D. Piomelli The molecular logic of endocannabinoid signalling , 2003, Nature Reviews Neuroscience.

[17]  T. Seidenbecher,et al.  Amygdalar and Hippocampal Theta Rhythm Synchronization During Fear Memory Retrieval , 2003, Science.

[18]  R. Nicoll,et al.  Postsynaptic Density-95 Mimics and Occludes Hippocampal Long-Term Potentiation and Enhances Long-Term Depression , 2003, The Journal of Neuroscience.

[19]  R. Darnell,et al.  Nova Regulates GABAA Receptor γ2 Alternative Splicing via a Distal Downstream UCAU-Rich Intronic Splicing Enhancer , 2003, Molecular and Cellular Biology.

[20]  P. Castillo,et al.  Heterosynaptic LTD of Hippocampal GABAergic Synapses A Novel Role of Endocannabinoids in Regulating Excitability , 2003, Neuron.

[21]  R. Nicoll,et al.  Expression mechanisms underlying long-term potentiation: a postsynaptic view. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[22]  Roberto Malinow,et al.  AMPA receptor trafficking and long-term potentiation. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[23]  Keiichi Nagata,et al.  Kv3.4 subunits enhance the repolarizing efficiency of Kv3.1 channels in fast-spiking neurons , 2003, Nature Neuroscience.

[24]  M. Sheng,et al.  Postsynaptic Signaling and Plasticity Mechanisms , 2002, Science.

[25]  E. Kuzhikandathil,et al.  Classic D1 dopamine receptor antagonist R-(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride (SCH23390) directly inhibits G protein-coupled inwardly rectifying potassium channels. , 2002, Molecular pharmacology.

[26]  J. Lisman,et al.  The molecular basis of CaMKII function in synaptic and behavioural memory , 2002, Nature Reviews Neuroscience.

[27]  Y. Jan,et al.  Diverse Trafficking Patterns Due to Multiple Traffic Motifs in G Protein-Activated Inwardly Rectifying Potassium Channels from Brain and Heart , 2002, Neuron.

[28]  I. Palacios RNA Processing: Splicing and the Cytoplasmic Localisation of mRNA , 2002, Current Biology.

[29]  W. Gu,et al.  A predominantly nuclear protein affecting cytoplasmic localization of β-actin mRNA in fibroblasts and neurons , 2002, The Journal of cell biology.

[30]  S. Russek,et al.  Human GABABR genomic structure: evidence for splice variants in GABABR1 but not GABABR2 , 2001 .

[31]  M. Pangalos,et al.  Comparative immunohistochemical localisation of GABAB1a, GABAB1b and GABAB2 subunits in rat brain, spinal cord and dorsal root ganglion , 2001, Neuroscience.

[32]  G. Collingridge,et al.  GABAB Receptors Couple Directly to the Transcription Factor ATF4 , 2001, Molecular and Cellular Neuroscience.

[33]  R. Nicoll,et al.  Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses , 2001, Nature.

[34]  M. Pangalos,et al.  Association of GABAB Receptors and Members of the 14-3-3 Family of Signaling Proteins , 2001, Molecular and Cellular Neuroscience.

[35]  S. Martin,et al.  Human GABA(B)R genomic structure: evidence for splice variants in GABA(B)R1 but not GABA(B)R2. , 2001, Gene.

[36]  R. Darnell,et al.  Paraneoplastic neurologic disease antigens: RNA-binding proteins and signaling proteins in neuronal degeneration. , 2001, Annual review of neuroscience.

[37]  F. Ciruela,et al.  The GABAB receptor interacts directly with the related transcription factors CREB2 and ATFx. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[38]  S. Stamm,et al.  The Metabotropic GABAB Receptor Directly Interacts with the Activating Transcription Factor 4* , 2000, The Journal of Biological Chemistry.

[39]  J. Yong,et al.  Pre-mRNA splicing imprints mRNA in the nucleus with a novel RNA-binding protein that persists in the cytoplasm. , 2000, Molecular cell.

[40]  D. Clapham,et al.  Brain Localization and Behavioral Impact of the G-Protein-Gated K+ Channel Subunit GIRK4 , 2000, The Journal of Neuroscience.

[41]  R. Malinow,et al.  Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. , 2000, Science.

[42]  M. Scanziani GABA Spillover Activates Postsynaptic GABAB Receptors to Control Rhythmic Hippocampal Activity , 2000, Neuron.

[43]  Robert B Darnell,et al.  Nova-1 Regulates Neuron-Specific Alternative Splicing and Is Essential for Neuronal Viability , 2000, Neuron.

[44]  F. Marshall,et al.  GABAB receptors - the first 7TM heterodimers. , 1999, Trends in pharmacological sciences.

[45]  A. Karschin,et al.  Alternative splicing generates a novel isoform of the rat metabotropic GABABR1 receptor , 1999, The European journal of neuroscience.

[46]  Kristen M Harris,et al.  Structure, development, and plasticity of dendritic spines , 1999, Current Opinion in Neurobiology.

[47]  P A Fuchs,et al.  Mechanisms of hair cell tuning. , 1999, Annual review of physiology.

[48]  Y. Uezono,et al.  Cloning and tissue distribution of novel splice variants of the rat GABAB receptor. , 1998, Biochemical and biophysical research communications.

[49]  Y. Kurachi,et al.  G protein regulation of potassium ion channels. , 1998, Pharmacological reviews.

[50]  R. Darnell,et al.  The neuronal RNA-binding protein Nova-2 is implicated as the autoantigen targeted in POMA patients with dementia. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[51]  D Debanne,et al.  Critical Role of Axonal A-Type K+ Channels and Axonal Geometry in the Gating of Action Potential Propagation along CA3 Pyramidal Cell Axons: A Simulation Study , 1998, The Journal of Neuroscience.

[52]  R. Piva,et al.  Characterization of murine Girk2 transcript isoforms: structure and differential expression. , 1998, Genomics.

[53]  P. Somogyi,et al.  Salient features of synaptic organisation in the cerebral cortex 1 Published on the World Wide Web on 3 March 1998. 1 , 1998, Brain Research Reviews.

[54]  P. Somogyi,et al.  Unitary IPSPs evoked by interneurons at the stratum radiatum‐stratum lacunosum‐moleculare border in the CA1 area of the rat hippocampus in vitro , 1998, The Journal of physiology.

[55]  D. Debanne,et al.  Action-potential propagation gated by an axonal IA-like K+ conductance in hippocampus , 1997, Nature.

[56]  Christian Lüscher,et al.  G Protein-Coupled Inwardly Rectifying K+ Channels (GIRKs) Mediate Postsynaptic but Not Presynaptic Transmitter Actions in Hippocampal Neurons , 1997, Neuron.

[57]  C. Chavkin,et al.  GIRK1 immunoreactivity is present predominantly in dendrites, dendritic spines, and somata in the CA1 region of the hippocampus. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[58]  Y. Jan,et al.  Heteromultimerization of G-Protein-Gated Inwardly Rectifying K+ Channel Proteins GIRK1 and GIRK2 and Their Altered Expression in weaver Brain , 1996, The Journal of Neuroscience.

[59]  Y. Ben-Ari,et al.  Expression of LTP by AMPA and/or NMDA receptors is determined by the extent of NMDA receptors activation during the tetanus. , 1995, Journal of neurophysiology.

[60]  P. Somogyi,et al.  Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons , 1995, Nature.

[61]  R. Egan,et al.  The pharmacology of SCH 50911: a novel, orally-active GABA-beta receptor antagonist. , 1995, The Journal of pharmacology and experimental therapeutics.

[62]  M. Rosenblum,et al.  Immunological and pathological study of anti‐Ri–associated encephalopathy , 1994, Annals of neurology.

[63]  John O'Keefe,et al.  Hippocampus, theta, and spatial memory , 1993, Current Opinion in Neurobiology.

[64]  R. Darnell,et al.  Nova, the paraneoplastic Ri antigen, is homologous to an RNA-binding protein and is specifically expressed in the developing motor system , 1993, Neuron.

[65]  G. Brewer,et al.  Optimized survival of hippocampal neurons in B27‐supplemented neurobasal™, a new serum‐free medium combination , 1993, Journal of neuroscience research.

[66]  T. Bliss,et al.  A synaptic model of memory: long-term potentiation in the hippocampus , 1993, Nature.

[67]  N W Daw,et al.  The role of NMDA receptors in information processing. , 1993, Annual review of neuroscience.

[68]  Bertil Hille,et al.  G protein-coupled mechanisms and nervous signaling , 1992, Neuron.

[69]  M. Pranzatelli The neurobiology of the opsoclonus-myoclonus syndrome. , 1992, Clinical neuropharmacology.

[70]  M. Rosenblum,et al.  Anti‐Ri: An antibody associated with paraneoplastic opsoclonus and breast cancer , 1991, Annals of neurology.

[71]  G. Collingridge,et al.  Long-term potentiation of NMDA receptor-mediated synaptic transmission in the hippocampus , 1991, Nature.

[72]  T J Sejnowski,et al.  When is an inhibitory synapse effective? , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[73]  R. Tsien,et al.  Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP. , 1989, Science.

[74]  R. Nicoll,et al.  An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation , 1989, Nature.

[75]  R. Nicoll,et al.  A persistent postsynaptic modification mediates long-term potentiation in the hippocampus , 1988, Neuron.

[76]  R S Zucker,et al.  Postsynaptic calcium is sufficient for potentiation of hippocampal synaptic transmission. , 1988, Science.

[77]  R. Lester,et al.  Synaptic activation of N‐methyl‐D‐aspartate receptors in the Schaffer collateral‐commissural pathway of rat hippocampus. , 1988, The Journal of physiology.

[78]  B. Hille,et al.  Ionic channels of excitable membranes , 2001 .