Power flow management of microgrid networks using model predictive control

In this paper, we present a power flow management method for a network of cooperating microgrids within the context of a smart grid by formulating the problem in a model predictive control framework. In order to reliably and economically provide the required power to the costumers, the proposed method enables the network of microgrids to share the power generated from their renewable energy sources and minimize the power needed from the micro gas turbines. To corroborate the viability of the proposed method, we will illustrate simulation results on a model consisting of three microgrids in a network.

[1]  N. D. Hatziargyriou,et al.  Micro-Grid Simulation during Grid-Connected and Islanded Modes of Operation , 2005 .

[2]  W. Wood Spinning Reserve Constrained Static and Dynamic Economic Dispatch , 1982, IEEE Transactions on Power Apparatus and Systems.

[3]  H. Farhangi,et al.  The path of the smart grid , 2010, IEEE Power and Energy Magazine.

[4]  Chris Marnay,et al.  Integration of distributed energy resources. The CERTS Microgrid Concept , 2002 .

[5]  Jan M. Maciejowski,et al.  Predictive control : with constraints , 2002 .

[6]  Georges A. Darbellay,et al.  Forecasting the short-term demand for electricity: Do neural networks stand a better chance? , 2000 .

[7]  R.H. Lasseter,et al.  Autonomous control of microgrids , 2006, 2006 IEEE Power Engineering Society General Meeting.

[8]  A. Apostolov Integration of distributed energy resources in smart grids , 2013 .

[9]  A. Elaiw,et al.  An application of model predictive control to the dynamic economic dispatch of power generation , 2011 .

[10]  K. Hindi,et al.  Dynamic economic dispatch for large scale power systems: a Lagrangian relaxation approach , 1991 .

[11]  R.H. Lasseter,et al.  Microgrid: a conceptual solution , 2004, 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551).

[12]  Dale Ross,et al.  Dynamic Economic Dispatch of Generation , 1980, IEEE Transactions on Power Apparatus and Systems.

[13]  Frank Allgöwer,et al.  State and Output Feedback Nonlinear Model Predictive Control: An Overview , 2003, Eur. J. Control.

[14]  James B. Rawlings,et al.  Tutorial overview of model predictive control , 2000 .

[15]  Masayuki Fujita,et al.  On Predictive Control for Systems with Information Structured Constraints , 2011 .

[16]  Stephanopoulos Chemical Process Control , 2008 .

[17]  Liuping Wang,et al.  Model Predictive Control System Design and Implementation Using MATLAB , 2009 .

[18]  J. H. Leet,et al.  Worst-case formulations of model predictive control for systems with bounded parameters , 1997, Autom..

[19]  Xiaohua Xia,et al.  Optimal dynamic economic dispatch of generation: A review , 2010 .

[20]  J. Rawlings,et al.  Linear model predictive control of unstable processes , 1993 .

[21]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[22]  Manfred Morari,et al.  State-space interpretation of model predictive control , 1994, Autom..

[23]  B.. Otomega,et al.  Model Predictive Control to Alleviate Thermal Overloads , 2007, IEEE Transactions on Power Systems.

[24]  Andrew A. Chien,et al.  The MicroGrid: a Scientific Tool for Modeling Computational Grids , 2006 .

[25]  J. W. Taylor,et al.  Short-term electricity demand forecasting using double seasonal exponential smoothing , 2003, J. Oper. Res. Soc..

[26]  G. P. Granelli,et al.  Fast and efficient gradient projection algorithm for dynamic generation dispatching , 1989 .

[27]  G. Nicolao,et al.  Stability and Robustness of Nonlinear Receding Horizon Control , 2000 .

[28]  Masayuki Fujita,et al.  Predictive control and estimation for systems with information structured constraints , 2011, 2011 11th International Conference on Control, Automation and Systems.

[29]  Manfred Morari,et al.  Model predictive control: Theory and practice - A survey , 1989, Autom..