Block companion Singer cycles, primitive recursive vector sequences, and coprime polynomial pairs over finite fields

Abstract We discuss a conjecture concerning the enumeration of nonsingular matrices over a finite field that are block companion and whose order is the maximum possible in the corresponding general linear group. A special case is proved using some recent results on the probability that a pair of polynomials with coefficients in a finite field is coprime. Connection with an older problem of Niederreiter about the number of splitting subspaces of a given dimension are outlined and an asymptotic version of the conjectural formula is established. Some applications to the enumeration of nonsingular Toeplitz matrices of a given size over a finite field are also discussed.

[1]  Joachim von zur Gathen,et al.  Irreducible trinomials over finite fields , 2001, ISSAC '01.

[2]  Guang Zeng,et al.  High Efficiency Feedback Shift Register: sigma-LFSR , 2007, IACR Cryptol. ePrint Arch..

[3]  Meena Kumari,et al.  Primitive polynomials, singer cycles and word-oriented linear feedback shift registers , 2009, Des. Codes Cryptogr..

[4]  Donald E. Knuth The Art of Computer Programming 2 / Seminumerical Algorithms , 1971 .

[5]  K. Conrad,et al.  Finite Fields , 2018, Series and Products in the Development of Mathematics.

[6]  Xiang-dong Hou,et al.  Number of irreducible polynomials and pairs of relatively prime polynomials in several variables over finite fields , 2008, Finite Fields Their Appl..

[7]  Daniel Panario,et al.  Swan-like results for binomials and trinomials over finite fields of odd characteristic , 2011, Des. Codes Cryptogr..

[8]  H. Niederreiter The Multiple-Recursive Matrix Method for Pseudorandom Number Generation , 1995 .

[9]  Zhicheng Gao,et al.  Degree distribution of the greatest common divisor of polynomials over 𝔽q , 2006, Random Struct. Algorithms.

[10]  Boaz Tsaban,et al.  Efficient linear feedback shift registers with maximal period , 2002, IACR Cryptol. ePrint Arch..

[11]  Arthur T. Benjamin,et al.  The Probability of Relatively Prime Polynomials , 2007 .

[12]  Astrid Reifegerste On an Involution Concerning Pairs of Polynomials over F2 , 2000, J. Comb. Theory, Ser. A.

[13]  N. Jacobson,et al.  Basic Algebra II , 1989 .

[14]  Joachim von zur Gathen Irreducible trinomials over finite fields , 2003, Math. Comput..

[15]  Erich Kaltofen,et al.  On rank properties of Toeplitz matrices over finite fields , 1996, ISSAC '96.

[16]  Donald E. Knuth,et al.  The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .

[17]  H. Niederreiter Factorization of polynomials and some linear-algebra problems over finite fields , 1993 .

[18]  R. G. Swan,et al.  Factorization of polynomials over finite fields. , 1962 .

[19]  Doron Zeilberger,et al.  A Pentagonal Number Sieve , 1998, J. Comb. Theory, Ser. A.

[21]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[22]  I. N. Herstein,et al.  The probability that a matrix be nilpotent , 1958 .

[23]  公庄 庸三 Basic Algebra = 代数学入門 , 2002 .

[24]  Sudhir R. Ghorpade,et al.  Relatively prime polynomials and nonsingular Hankel matrices over finite fields , 2011, J. Comb. Theory, Ser. A.

[25]  D. E. Daykin Distribution of Bordered Persymmetric Matrices in a Finite Field. , 1960 .

[26]  Rudolf Lide,et al.  Finite fields , 1983 .