Block companion Singer cycles, primitive recursive vector sequences, and coprime polynomial pairs over finite fields
暂无分享,去创建一个
[1] Joachim von zur Gathen,et al. Irreducible trinomials over finite fields , 2001, ISSAC '01.
[2] Guang Zeng,et al. High Efficiency Feedback Shift Register: sigma-LFSR , 2007, IACR Cryptol. ePrint Arch..
[3] Meena Kumari,et al. Primitive polynomials, singer cycles and word-oriented linear feedback shift registers , 2009, Des. Codes Cryptogr..
[4] Donald E. Knuth. The Art of Computer Programming 2 / Seminumerical Algorithms , 1971 .
[5] K. Conrad,et al. Finite Fields , 2018, Series and Products in the Development of Mathematics.
[6] Xiang-dong Hou,et al. Number of irreducible polynomials and pairs of relatively prime polynomials in several variables over finite fields , 2008, Finite Fields Their Appl..
[7] Daniel Panario,et al. Swan-like results for binomials and trinomials over finite fields of odd characteristic , 2011, Des. Codes Cryptogr..
[8] H. Niederreiter. The Multiple-Recursive Matrix Method for Pseudorandom Number Generation , 1995 .
[9] Zhicheng Gao,et al. Degree distribution of the greatest common divisor of polynomials over 𝔽q , 2006, Random Struct. Algorithms.
[10] Boaz Tsaban,et al. Efficient linear feedback shift registers with maximal period , 2002, IACR Cryptol. ePrint Arch..
[11] Arthur T. Benjamin,et al. The Probability of Relatively Prime Polynomials , 2007 .
[12] Astrid Reifegerste. On an Involution Concerning Pairs of Polynomials over F2 , 2000, J. Comb. Theory, Ser. A.
[13] N. Jacobson,et al. Basic Algebra II , 1989 .
[14] Joachim von zur Gathen. Irreducible trinomials over finite fields , 2003, Math. Comput..
[15] Erich Kaltofen,et al. On rank properties of Toeplitz matrices over finite fields , 1996, ISSAC '96.
[16] Donald E. Knuth,et al. The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .
[17] H. Niederreiter. Factorization of polynomials and some linear-algebra problems over finite fields , 1993 .
[18] R. G. Swan,et al. Factorization of polynomials over finite fields. , 1962 .
[19] Doron Zeilberger,et al. A Pentagonal Number Sieve , 1998, J. Comb. Theory, Ser. A.
[21] David Thomas,et al. The Art in Computer Programming , 2001 .
[22] I. N. Herstein,et al. The probability that a matrix be nilpotent , 1958 .
[23] 公庄 庸三. Basic Algebra = 代数学入門 , 2002 .
[24] Sudhir R. Ghorpade,et al. Relatively prime polynomials and nonsingular Hankel matrices over finite fields , 2011, J. Comb. Theory, Ser. A.
[25] D. E. Daykin. Distribution of Bordered Persymmetric Matrices in a Finite Field. , 1960 .
[26] Rudolf Lide,et al. Finite fields , 1983 .