Reduced graphene oxide anchored tin sulfide hierarchical microspheres with superior Li-ion storage performance

[1]  G. Cui,et al.  Lithium storage in a highly conductive Cu3Ge boosted Ge/graphene aerogel , 2015 .

[2]  Jun Liu,et al.  In Situ Synthesis of MnS Hollow Microspheres on Reduced Graphene Oxide Sheets as High-Capacity and Long-Life Anodes for Li- and Na-Ion Batteries. , 2015, ACS applied materials & interfaces.

[3]  Jun Liu,et al.  Facile synthesis of P2-type Na0.4Mn0.54Co0.46O2 as a high capacity cathode material for sodium-ion batteries , 2015 .

[4]  G. Cui,et al.  Hierarchically Designed Germanium Microcubes with High Initial Coulombic Efficiency toward Highly Reversible Lithium Storage , 2015 .

[5]  S. Zhang,et al.  Growth of ultrathin MoS₂ nanosheets with expanded spacing of (002) plane on carbon nanotubes for high-performance sodium-ion battery anodes. , 2014, ACS applied materials & interfaces.

[6]  Jun Liu,et al.  Facile synthesis of highly porous Ni-Sn intermetallic microcages with excellent electrochemical performance for lithium and sodium storage. , 2014, Nano letters.

[7]  Yan Yu,et al.  Ge/C nanowires as high-capacity and long-life anode materials for Li-ion batteries. , 2014, ACS nano.

[8]  De-cheng Li,et al.  Persistent cyclestability of carbon coated Zn–Sn metal oxide/carbon microspheres as highly reversible anode material for lithium-ion batteries , 2013 .

[9]  Yu‐Guo Guo,et al.  Rational design of anode materials based on Group IVA elements (Si, Ge, and Sn) for lithium-ion batteries. , 2013, Chemistry, an Asian journal.

[10]  T. Chen,et al.  Synthesis and electrochemical performances of cobalt sulfides/graphene nanocomposite as anode material of Li-ion battery , 2013 .

[11]  M. Qu,et al.  SnS2@reduced graphene oxide nanocomposites as anode materials with high capacity for rechargeable lithium ion batteries , 2012 .

[12]  M. Zhang,et al.  Graphene oxide oxidizes stannous ions to synthesize tin sulfide-graphene nanocomposites with small crystal size for high performance lithium ion batteries† , 2012 .

[13]  P. Shen,et al.  Porous SnS nanorods/carbon hybrid materials as highly stable and high capacity anode for Li-ion batteries. , 2012, ACS applied materials & interfaces.

[14]  Tianxi Liu,et al.  Synthesis of Fe nanoparticles@graphene composites for environmental applications. , 2012, Journal of hazardous materials.

[15]  Jianzhong Jiang,et al.  Layer-stacked tin disulfide nanorods in silica nanoreactors with improved lithium storage capabilities. , 2012, Nanoscale.

[16]  Kun Du,et al.  Flower-like SnO2/graphene composite for high-capacity lithium storage , 2012 .

[17]  Junhong Chen,et al.  Binding Sn-based nanoparticles on graphene as the anode of rechargeable lithium-ion batteries , 2012 .

[18]  Q. Li,et al.  Plate-like SnS2nanostructures: Hydrothermal preparation, growth mechanism and excellent electrochemical properties , 2012 .

[19]  Zhong Li,et al.  High reversible capacity of SnO2/graphene nanocomposite as an anode material for lithium-ion batteries , 2011 .

[20]  Kaixue Wang,et al.  High stability and superior rate capability of three-dimensional hierarchical SnS2 microspheres as anode material in lithium ion batteries , 2011 .

[21]  Martin Pumera,et al.  Graphene-based nanomaterials for energy storage , 2011 .

[22]  C. Zhai,et al.  Large-scale synthesis of ultrathin hexagonal tin disulfide nanosheets with highly reversible lithium storage. , 2011, Chemical communications.

[23]  Minghong Wu,et al.  Graphene supported Sn–Sb@carbon core-shell particles as a superior anode for lithium ion batteries , 2010 .

[24]  Q. Li,et al.  Synthesis of self-assembled 3D flowerlike SnS2 nanostructures with enhanced lithium ion storage property , 2010 .

[25]  Hui Xia,et al.  Double-shelled nanocapsules of V2O5-based composites as high-performance anode and cathode materials for Li ion batteries. , 2009, Journal of the American Chemical Society.

[26]  Xiaoping Shen,et al.  Graphene nanosheets for enhanced lithium storage in lithium ion batteries , 2009 .

[27]  Yi Cui,et al.  Impedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes , 2009 .

[28]  J. Lee,et al.  Characterizations of Al―Y thin film composite anode materials for lithium-ion batteries , 2009 .

[29]  Y. Sung,et al.  Electrochemical behavior of carbon-coated SnS2 for use as the anode in lithium-ion batteries , 2009 .

[30]  P. Balaya Size effects and nanostructured materials for energy applications , 2008 .

[31]  Chunjoong Kim,et al.  Two‐Dimensional SnS2 Nanoplates with Extraordinary High Discharge Capacity for Lithium Ion Batteries , 2008 .

[32]  Jin-Song Hu,et al.  Nanostructured Materials for Electrochemical Energy Conversion and Storage Devices , 2008 .

[33]  N. Peres,et al.  Fine Structure Constant Defines Visual Transparency of Graphene , 2008, Science.

[34]  Chunjoong Kim,et al.  Novel SnS2-nanosheet anodes for lithium-ion batteries , 2007 .

[35]  P. Kumta,et al.  Silicon, graphite and resin based hard carbon nanocomposite anodes for lithium ion batteries , 2007 .

[36]  J. Tu,et al.  Net-like SnS/carbon nanocomposite film anode material for lithium ion batteries , 2007 .

[37]  J. Tu,et al.  Nanoscale SnS with and without carbon-coatings as an anode material for lithium ion batteries , 2006 .

[38]  Xinglong Gou,et al.  Synthesis, characterization and application of SnSx (x= 1, 2) nanoparticles , 2005 .

[39]  R. Holze,et al.  Carbon anode materials for lithium ion batteries , 2003 .