An a posteriori error estimate for a first-kind integral equation

In this paper we present a new a posteriori error estimate for the boundary element method applied to an integral equation of the first kind. The estimate is local and sharp for quasi-uniform meshes and so improves earlier work of ours. The mesh-dependence of the constants is analyzed and shown to be weaker than expected from our previous work. Besides the Galerkin boundary element method, the collocation method and the qualocation method are considered. A numerical example is given involving an adaptive feedback algorithm.

[1]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[2]  Carsten Carstensen,et al.  Efficiency of a posteriori BEM-error estimates for first-kind integral equations on quasi-uniform meshes , 1996, Math. Comput..

[3]  Wolfgang L. Wendland,et al.  Local residual-type error estimates for adaptive boundary element methods on closed curves , 1993 .

[4]  Martin Costabel,et al.  Boundary integral equations for mixed boundary value problems in polygonal domains and Galerkin approximation , 1985 .

[5]  Carsten Carstensen,et al.  Adaptive Boundary Element Methods for Some First Kind Integral Equations , 1996 .

[6]  Ernst P. Stephan,et al.  Remarks to Galerkin and least squares methods with finite elements for general elliptic problems , 1976 .

[7]  G. A. Chandler,et al.  Spline qualocation methods for boundary integral equations , 1990 .

[8]  Ernst P. Stephan,et al.  On the integral equation method for the plane mixed boundary value problem of the Laplacian , 1979 .

[9]  Wolfgang L. Wendland,et al.  Adaptive boundary element methods for strongly elliptic integral equations , 1988 .

[10]  Jöran Bergh,et al.  General Properties of Interpolation Spaces , 1976 .

[11]  Carsten Carstensen,et al.  Adaptive boundary element methods and adaptive finite element and boundary element coupling , 1995 .

[12]  Carsten Carstensen,et al.  A posteriori error estimates for boundary element methods , 1995 .

[13]  Ian H. Sloan,et al.  The Galerkin Method for Integral Equations of the First Kind with Logarithmic Kernel: Theory , 1988 .

[14]  E. Rank,et al.  Adaptive boundary element methods , 1987 .

[15]  H. Beckert,et al.  J. L. Lions and E. Magenes, Non‐Homogeneous Boundary Value Problems and Applications, II. (Die Grundlehren d. Math. Wissenschaften, Bd. 182). XI + 242 S. Berlin/Heidelberg/New York 1972. Springer‐Verlag. Preis geb. DM 58,— , 1973 .

[16]  Douglas N. Arnold,et al.  On the asymptotic convergence of collocation methods , 1983 .

[17]  E. Stephan,et al.  The hp-Version of the Boundary Element Method on Polygons , 1996 .

[18]  Martin Costabel,et al.  Boundary Integral Operators on Lipschitz Domains: Elementary Results , 1988 .

[19]  E. P. Stephan,et al.  The $h-p$ version of the boundary element method on polygonal domains with quasiuniform meshes , 1991 .

[20]  Kenneth Eriksson,et al.  On adaptive finite element methods for Fredholm integral equations of the second kind , 1994 .

[21]  Carsten Carstensen,et al.  Adaptive boundary-element methods for transmission problems , 1997, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.