Automated Reencoding of Boolean Formulas

We present a novel preprocessing technique to automatically reduce the size of Boolean formulas. This technique, called Bounded Variable Addition (BVA), exchanges clauses for variables. Similar to other preprocessing techniques, BVA greedily lowers the sum of variables and clauses, a rough measure for the hardness to solve a formula. We show that cardinality constraints (CCs) can efficiently be reencoded: from a naive CC encoding, BVA automatically generates a compact encoding, which is smaller than sophisticated encodings. Experimental results show that applying BVA can improve SAT solving performance.

[1]  Masahiro Fujita,et al.  Symbolic model checking using SAT procedures instead of BDDs , 1999, DAC '99.

[2]  Igor L. Markov,et al.  Solving difficult SAT instances in the presence of symmetry , 2002, Proceedings 2002 Design Automation Conference (IEEE Cat. No.02CH37324).

[3]  Joao Marques-Silva,et al.  Automated Design Debugging With Maximum Satisfiability , 2010, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[4]  Zurab Khasidashvili,et al.  Industrial Strength SAT-based Alignability Algorithm for Hardware Equivalence Verification , 2007, Formal Methods in Computer Aided Design (FMCAD'07).

[5]  Robert K. Brayton,et al.  Using SAT for combinational equivalence checking , 2001, Proceedings Design, Automation and Test in Europe. Conference and Exhibition 2001.

[6]  Kenneth L. McMillan,et al.  Interpolation and SAT-Based Model Checking , 2003, CAV.

[7]  Olivier Bailleux,et al.  Efficient CNF Encoding of Boolean Cardinality Constraints , 2003, CP.

[8]  Jason Baumgartner,et al.  Scalable Sequential Equivalence Checking across Arbitrary Design Transformations , 2006, 2006 International Conference on Computer Design.

[9]  Rajeev Alur,et al.  A Temporal Logic of Nested Calls and Returns , 2004, TACAS.

[10]  Alessandro Zanarini,et al.  Generalizations of the Global Cardinality Constraint for Hierarchical Resources , 2007, CPAIOR.

[11]  Sharad Malik,et al.  Combining strengths of circuit-based and CNF-based algorithms for a high-performance SAT solver , 2002, DAC '02.

[12]  Wolfgang Faber,et al.  Logic Programming and Nonmonotonic Reasoning , 2011, Lecture Notes in Computer Science.

[13]  Fahiem Bacchus,et al.  Effective Preprocessing with Hyper-Resolution and Equality Reduction , 2003, SAT.

[14]  Laurence A. Wolsey,et al.  Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, 4th International Conference, CPAIOR 2007, Brussels, Belgium, May 23-26, 2007, Proceedings , 2007, CPAIOR.

[15]  Priyank Kalla,et al.  A Gröbner Basis Approach to CNF-Formulae Preprocessing , 2007, TACAS.

[16]  Peter F. Patel-Schneider,et al.  DLP System Description , 1998, Description Logics.

[17]  Francesca Rossi,et al.  Principles and Practice of Constraint Programming – CP 2003 , 2003, Lecture Notes in Computer Science.

[18]  Wolfgang Küchlin,et al.  Proving Consistency Assertions for Automotive Product Data Management , 2000, Journal of Automated Reasoning.

[19]  Jean-Charles Régin Combination of Among and Cardinality Constraints , 2005, CPAIOR.

[20]  Dhiraj K. Pradhan,et al.  NiVER: Non Increasing Variable Elimination Resolution for Preprocessing SAT instances , 2004, SAT.

[21]  Gilles Audemard,et al.  A Restriction of Extended Resolution for Clause Learning SAT Solvers , 2010, AAAI.

[22]  Joao Marques-Silva,et al.  Theory and Applications of Satisfiability Testing - SAT 2007, 10th International Conference, Lisbon, Portugal, May 28-31, 2007, Proceedings , 2007, SAT.

[23]  Armin Biere,et al.  Effective Preprocessing in SAT Through Variable and Clause Elimination , 2005, SAT.

[24]  Joao Marques-Silva,et al.  GRASP: A Search Algorithm for Propositional Satisfiability , 1999, IEEE Trans. Computers.

[25]  Toby Walsh,et al.  Beyond Finite Domains: The All Different and Global Cardinality Constraints , 2005, CP.

[26]  Peter van Beek,et al.  Improved Algorithms for the Global Cardinality Constraint , 2004, CP.

[27]  Larry Wos,et al.  What Is Automated Reasoning? , 1987, J. Autom. Reason..

[28]  Armin Biere Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT Race 2010 , 2010 .

[29]  Sharad Malik,et al.  Chaff: engineering an efficient SAT solver , 2001, Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232).

[30]  Joao Marques-Silva,et al.  Algorithms for Maximum Satisfiability using Unsatisfiable Cores , 2008, 2008 Design, Automation and Test in Europe.

[31]  Aaron R. Bradley,et al.  SAT-Based Model Checking without Unrolling , 2011, VMCAI.

[32]  R. Brayton,et al.  Improvements to Combinational Equivalence Checking , 2006, 2006 IEEE/ACM International Conference on Computer Aided Design.

[33]  Mary Sheeran,et al.  Checking Safety Properties Using Induction and a SAT-Solver , 2000, FMCAD.

[34]  Martin Gebser,et al.  The Conflict-Driven Answer Set Solver clasp: Progress Report , 2009, LPNMR.

[35]  Steven David Prestwich,et al.  Variable Dependency in Local Search: Prevention Is Better Than Cure , 2007, SAT.

[36]  Niklas Sörensson,et al.  An Extensible SAT-solver , 2003, SAT.

[37]  Alessandro Cimatti,et al.  Theory and Applications of Satisfiability Testing – SAT 2012 , 2012, Lecture Notes in Computer Science.

[38]  Simon de Givry,et al.  Radio Link Frequency Assignment , 1999, Constraints.

[39]  Panagiotis Manolios,et al.  Faster SAT solving with better CNF generation , 2009, 2009 Design, Automation & Test in Europe Conference & Exhibition.

[40]  Hans van Maaren,et al.  A two phase algorithm for solving a class of hard satissfiability problems , 1998 .

[41]  Niklas Sörensson,et al.  Translating Pseudo-Boolean Constraints into SAT , 2006, J. Satisf. Boolean Model. Comput..

[42]  Armin Biere,et al.  Resolve and Expand , 2004, SAT.

[43]  Joao Marques-Silva,et al.  Algorithms for solving Boolean satisfiability in combinational circuits , 1999, Design, Automation and Test in Europe Conference and Exhibition, 1999. Proceedings (Cat. No. PR00078).

[44]  Albert Oliveras,et al.  Cardinality Networks and Their Applications , 2009, SAT.

[45]  Carsten Sinz,et al.  Towards an Optimal CNF Encoding of Boolean Cardinality Constraints , 2005, CP.

[46]  Jingchao Chen,et al.  A New SAT Encoding of the At-Most-One Constraint , 2010 .

[47]  Oliver Kullmann,et al.  Theory and Applications of Satisfiability Testing - SAT 2009, 12th International Conference, SAT 2009, Swansea, UK, June 30 - July 3, 2009. Proceedings , 2009, SAT.

[48]  Alan Mishchenko,et al.  Applying Logic Synthesis for Speeding Up SAT , 2007, SAT.

[49]  Katherine St. John,et al.  Efficiently calculating evolutionary tree measures using SAT , 2009 .

[50]  Kevin Leyton-Brown,et al.  SATzilla: Portfolio-based Algorithm Selection for SAT , 2008, J. Artif. Intell. Res..

[51]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[52]  Maria Luisa Bonet,et al.  Efficiently Calculating Evolutionary Tree Measures Using SAT , 2009, SAT.

[53]  Armin Biere,et al.  Blocked Clause Elimination , 2010, TACAS.

[54]  Mark Wallace,et al.  Principles and Practice of Constraint Programming – CP 2004 , 2004, Lecture Notes in Computer Science.

[55]  Mark H. Liffiton,et al.  A Cardinality Solver: More Expressive Constraints for Free - (Poster Presentation) , 2012, SAT.

[56]  Yael Ben-Haim,et al.  Perfect Hashing and CNF Encodings of Cardinality Constraints , 2012, SAT.

[57]  Andreas Kuehlmann,et al.  A fast pseudo-Boolean constraint solver , 2003, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[58]  Robert K. Brayton,et al.  DAG-aware AIG rewriting: a fresh look at combinational logic synthesis , 2006, 2006 43rd ACM/IEEE Design Automation Conference.

[59]  Calin Anton An Improved Satisfiable SAT Generator Based on Random Subgraph Isomorphism , 2011, Canadian Conference on AI.

[60]  Peter van Beek,et al.  Principles and Practice of Constraint Programming - CP 2005, 11th International Conference, CP 2005, Sitges, Spain, October 1-5, 2005, Proceedings , 2005, CP.

[61]  Armin Biere,et al.  Inprocessing Rules , 2012, IJCAR.